Star Formation in NGC 5194 (M51a): The Panchromatic View from GALEX to Spitzer

Far-ultraviolet to far-infrared images of the nearby galaxy NGC 5194 (M51a), from a combination of space-based (Spitzer, GALEX, and Hubble Space Telescope) and ground-based data, are used to investigate local and global star formation and the impact of dust extinction. The Spitzer data provide unprecedented spatial detail in the infrared, down to sizes ~500 pc at the distance of NGC 5194. The multiwavelength set is used to trace the relatively young stellar populations, the ionized gas, and the dust absorption and emission in H II-emitting knots, over 3 orders of magnitude in wavelength range. As is common in spiral galaxies, dust extinction is high in the center of the galaxy (AV ~ 3.5 mag), but its mean value decreases steadily as a function of galactocentric distance, as derived from both gas emission and stellar continuum properties. In the IR/UV-UV color plane, the NGC 5194 H II knots show the same trend observed for normal star-forming galaxies, having a much larger dispersion (~1 dex peak to peak) than starburst galaxies. We identify the dispersion as due to the UV emission predominantly tracing the evolved, nonionizing stellar population, up to ages ~50-100 Myr. While in starbursts the UV light traces the current star formation rate (SFR), in NGC 5194 it traces a combination of current and recent past SFRs. Possibly, mechanical feedback from supernovae is less effective at removing dust and gas from the star formation volume in normal star-forming galaxies than in starbursts because of the typically lower SFR densities in the former. The application of the starburst opacity curve for recovering the intrinsic UV emission (and deriving SFRs) in local and distant galaxies appears therefore appropriate only for SFR densities ≳1 M☉ yr-1 kpc-2. Unlike the UV emission, the monochromatic 24 μm luminosity is an accurate local SFR tracer for the H II knots in NGC 5194, with a peak-to-peak dispersion of less than a factor of 3 relative to hydrogen emission line tracers; this suggests that the 24 μm emission carriers are mainly heated by the young, ionizing stars. However, preliminary results show that the ratio of the 24 μm emission to the SFR varies by a factor of a few from galaxy to galaxy; this variation needs to be understood and carefully quantified before the 24 μm luminosity can be used as an SFR tracer for galaxy populations. While also correlated with star formation, the 8 μm emission is not directly proportional to the number of ionizing photons; it is overluminous, by up to a factor of ~2, relative to the galaxy's average in weakly ionized regions and is underluminous, by up to a factor of ~3, in strongly ionized regions. This confirms earlier suggestions that the carriers of the 8 μm emission are heated by more than one mechanism.

[1]  M. Livio,et al.  The Local Group as an astrophysical laboratory: The Local Group as an Astrophysical Laboratory , 2006 .

[2]  T. Heckman Local Starbursts in a Cosmological Context , 2005, astro-ph/0502022.

[3]  Caltech,et al.  X-ray properties of UV-selected star-forming galaxies at z ∼ 1 in the Hubble Deep Field North , 2005, astro-ph/0501411.

[4]  D. Schiminovich,et al.  Testing the Empirical Relation between Ultraviolet Color and Attenuation of Galaxies , 2005 .

[5]  A. Abergel,et al.  Are PAHs precursors of small hydrocarbons in photo-dissociation regions? The Horsehead case , 2005, astro-ph/0501339.

[6]  A. Szalay,et al.  Recent Star Formation in Nearby Galaxies from Galaxy Evolution Explorer Imaging: M101 and M51 , 2004, astro-ph/0411408.

[7]  A. Szalay,et al.  Dust Attenuation in the Nearby Universe: A Comparison between Galaxies Selected in the Ultraviolet and in the Far-Infrared , 2004, astro-ph/0411343.

[8]  A. Szalay,et al.  The Galaxy Evolution Explorer: A Space Ultraviolet Survey Mission , 2004, astro-ph/0411302.

[9]  Garching,et al.  PAH emission variations within the resolved starbursts of NGC 253 and NGC 1808 , 2004, astro-ph/0411272.

[10]  S. Zwart,et al.  Disruption time scales of star clusters in different galaxies , 2004, astro-ph/0408235.

[11]  Leanne Dale Data-day activities , 2005 .

[12]  R. Wyse in The Local Group as an Astrophysical Laboratory , 2005 .

[13]  P. James,et al.  The Hα galaxy survey. II. Extinction and [NII] corrections to Hα fluxes , 2004, astro-ph/0410386.

[14]  Erick T. Young,et al.  Reduction Algorithms for the Multiband Imaging Photometer for Spitzer , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  E. Peeters,et al.  Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? , 2004 .

[16]  James H. Burge,et al.  90prime: a prime focus imager for the Steward Observatory 90-in. telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  G. Gavazzi,et al.  Mid-IR emission of galaxies in the Virgo cluster and in the Coma supercluster IV. The nature of the dust heating sources , 2004, astro-ph/0409110.

[18]  L. Kewley,et al.  Spitzer Infrared Nearby Galaxies Survey (SINGS) Imaging of NGC 7331: A Panchromatic View of a Ringed Galaxy , 2004 .

[19]  R. J. Ivison,et al.  Evidence for Extended, Obscured Starbursts in Submillimeter Galaxies , 2004, astro-ph/0412051.

[20]  Caltech,et al.  The Anatomy of Star Formation in NGC 300 , 2004, astro-ph/0408248.

[21]  A. Boselli,et al.  The radial extinction profiles of late-type galaxies , 2004, astro-ph/0407617.

[22]  F. Bresolin,et al.  Abundances of Metal-rich H II Regions in M51 , 2004, astro-ph/0407065.

[23]  G. Fazio,et al.  Spatial Distribution of Warm Dust in Early-Type Galaxies , 2004, astro-ph/0406379.

[24]  E. Peeters,et al.  PAHs as a tracer of star formation , 2004, astro-ph/0406183.

[25]  D. Calzetti,et al.  Spatially Resolved Ultraviolet, Hα, Infrared, and Radio Star Formation in M81 , 2004, astro-ph/0406064.

[26]  M. Sauvage,et al.  Warm dust and aromatic bands as quantitative probes of star-formation activity , 2004, astro-ph/0402388.

[27]  C. Steidel,et al.  X-Ray and Radio Emission from Ultraviolet-selected Star-forming Galaxies at Redshifts 1.5 ≲ z ≲ 3.0 in the GOODS-North Field , 2004, astro-ph/0401432.

[28]  K. Gordon,et al.  The Ultraviolet Extinction Curve of Intraclump Dust in Taurus (TMC-1): Constraints on the 2175 Å Bump Absorber , 2004 .

[29]  S. M. Fall,et al.  Star formation history and dust content of galaxies drawn from ultraviolet surveys , 2003, astro-ph/0312474.

[30]  Daniela Calzetti,et al.  The Ionized Gas in Local Starburst Galaxies: Global and Small-Scale Feedback from Star Formation , 2003, astro-ph/0312385.

[31]  K. Gordon,et al.  Small Magellanic Cloud-Type Interstellar Dust in the Milky Way , 2003 .

[32]  M. Wolff,et al.  A Quantitative Comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way Ultraviolet to Near-Infrared Extinction Curves , 2003 .

[33]  Geoffrey C. Clayton,et al.  A Quantitative Comparison of SMC, LMC, and Milky Way UV to NIR Extinction Curves , 2003, astro-ph/0305257.

[34]  I. Smail,et al.  A median redshift of 2.4 for galaxies bright at submillimetre wavelengths , 2003, Nature.

[35]  R. Walterbos,et al.  Optical Spectroscopy and Ionization Models of the Diffuse Ionized Gas in M33, M51/NGC 5195, and M81 , 2003 .

[36]  J. Cuby,et al.  Hα Spectroscopy of Galaxies at z > 2: Kinematics and Star Formation , 2003, astro-ph/0303392.

[37]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[38]  D. Hollenbach,et al.  Time Dependence of the Ultraviolet Radiation Field in the Local Interstellar Medium , 2002, astro-ph/0202196.

[39]  D. Thilker,et al.  H II Regions and Diffuse Ionized Gas in 11 Nearby Spiral Galaxies , 2002 .

[40]  L. Kewley,et al.  The Hα and Infrared Star Formation Rates for the Nearby Field Galaxy Survey , 2002, astro-ph/0208508.

[41]  E. Oliva,et al.  Mid-Infrared line diagnostics of active galaxies - A spectroscopic AGN survey with ISO-SWS , 2002, astro-ph/0207381.

[42]  E. Bell Dust-induced Systematic Errors in Ultraviolet-derived Star Formation Rates , 2002, astro-ph/0207397.

[43]  U. Klaas,et al.  The relation of PAH strength with cold dust in galaxies , 2002 .

[44]  V. Buat Star Formation and Dust Extinction in Nearby Star Forming and Starburst Galaxies , 2002, astro-ph/0201281.

[45]  B. Draine,et al.  Do the Infrared Emission Features Need Ultraviolet Excitation? The Polycyclic Aromatic Hydrocarbon Model in UV-poor Reflection Nebulae , 2002, astro-ph/0201060.

[46]  Cambridge,et al.  An empirical calibration of star formation rate estimators , 2001, astro-ph/0112556.

[47]  E. Grebel,et al.  The Magellanic Clouds Photomtric Survey: The Small Magellanic Cloud Stellar Catalog and Extinction Map , 2001, astro-ph/0110665.

[48]  Daniela Calzetti,et al.  Far-Infrared Galaxies in the Far-Ultraviolet , 2001, astro-ph/0112352.

[49]  D. Calzetti The Dust Opacity of Star‐forming Galaxies , 2001, astro-ph/0109035.

[50]  E. Bell,et al.  The Effects of Dust in Simple Environments: Large Magellanic Cloud H II Regions , 2001, astro-ph/0108367.

[51]  Jr.,et al.  SINGS: The SIRTF Nearby Galaxies Survey , 2001, astro-ph/0305437.

[52]  H. Roussel,et al.  The relationship between star formation rates and mid-infrared emission in galactic disks ? , 2001, astro-ph/0104088.

[53]  U. Maryland,et al.  A Chandra Observation of M51: Active Nucleus and Nuclear Outflows , 2001, astro-ph/0103287.

[54]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[55]  G. Helou,et al.  The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths , 2000, astro-ph/0011014.

[56]  S. M. Fall,et al.  A Simple Model for the Absorption of Starlight by Dust in Galaxies , 2000, astro-ph/0003128.

[57]  E. A. Richards,et al.  Mapping the Evolution of High-Redshift Dusty Galaxies with Submillimeter Observations of a Radio-selected Sample , 2000, astro-ph/0001096.

[58]  K. Gordon,et al.  Multiple Scattering in Clumpy Media. II. Galactic Environments , 1999, astro-ph/9907342.

[59]  R. J. Ivison,et al.  Radio Constraints on the Identifications and Redshifts of Submillimeter Galaxies , 1999, astro-ph/9907083.

[60]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[61]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[62]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[63]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[64]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[65]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[66]  C. Leitherer,et al.  The Ultraviolet Spectroscopic Properties of Local Starbursts: Implications at High Redshift , 1998, astro-ph/9803185.

[67]  K. Gordon,et al.  Starburst-like Dust Extinction in the Small Magellanic Cloud , 1998, astro-ph/9802003.

[68]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[69]  Eric P. Smith,et al.  Ultraviolet Colors and Extinctions of H II Regions in the Whirlpool Galaxy (M51) , 1996, astro-ph/9606168.

[70]  J. Davies,et al.  The distribution of galactic inclinations - a clue to opacity? , 1996 .

[71]  T. Heckman,et al.  Internal Absorption and the Luminosity of Disk Galaxies , 1996 .

[72]  A. Kinney,et al.  Dust obscuration in starburst galaxies from near-infrared spectroscopy , 1996 .

[73]  A. Kinney,et al.  The heating of dust in starburst galaxies: The contribution of the nonionizing radiation , 1995 .

[74]  L. Costa,et al.  Dependence on Luminosity of Photometric Properties of Disk Galaxies: Surface Brightness, Size, and Internal Extinction , 1995 .

[75]  A. Kinney,et al.  Ultraviolet to optical spectral distributions of northern star-forming galaxies , 1995 .

[76]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[77]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[78]  R. Peletier,et al.  How transparent are spiral galaxies in the near infrared , 1992 .

[79]  G. Helou,et al.  Very small grains and the infrared colors of galaxies , 1991 .

[80]  G. Helou,et al.  Variations in the abundance of transiently heated particles within nearby molecular clouds , 1990 .

[81]  K. Sellgren,et al.  The excitation of 12 micron emission from very small particles , 1990 .

[82]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[83]  R. Kennicutt,et al.  Properties of H II region populations in galaxies. II. The H II region luminosity function , 1989 .

[84]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[85]  M. Pérault,et al.  Small grains and IRAS colors , 1988 .

[86]  R. Tully Nearby Galaxies Catalog , 1988 .

[87]  D. Leisawitz On the redistribution of OB star luminosity and the warming of nearby molecular clouds , 1987 .

[88]  G. Helou The IRAS Colors of Normal Galaxies , 1986 .

[89]  J. Gallagher,et al.  Circumnuclear turmoil in M 51. , 1985 .

[90]  H. Ford,et al.  Bubbles and jets in the center of M51 , 1985 .

[91]  P. Conti,et al.  The initial mass function for massive stars , 1982 .