Truncated SVD methods for discrete linear ill-posed problems
暂无分享,去创建一个
[1] Investigations on the Downward Continuation of Aerial Gravity Data , 1973 .
[2] J. Lawless,et al. A simulation study of ridge and other regression estimators , 1976 .
[3] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[4] N. Wermuth,et al. A Simulation Study of Alternatives to Ordinary Least Squares , 1977 .
[5] Michael Gerstl,et al. Least squares collocation and regularization , 1979 .
[6] David Gubbins,et al. Geomagnetic field analysis ‐ I. Stochastic inversion , 1983 .
[7] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[8] V. A. Morozov,et al. Methods for Solving Incorrectly Posed Problems , 1984 .
[9] Jeremy Bloxham,et al. Geomagnetic field analysis—III. Magnetic fields on the core—mantle boundary , 1985 .
[10] T. Madden,et al. Motions of the core surface derived by SV data , 1986 .
[11] F. Sansò,et al. Statistical methods in physical geodesy , 1986 .
[12] A. Tarantola. Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .
[13] E. C. Pavlis,et al. A new gravitational model for the earth from satellite tracking data - GEM-T1 , 1988 .
[14] George E. Backus,et al. Bayesian inference in geomagnetism , 1988 .
[15] W. Eddy,et al. The GEM-T2 Gravitational Model , 1989 .
[16] Jeremy Bloxham,et al. Simultaneous stochastic inversion for geomagnetic main field and secular variation: 2. 1820–1980 , 1989 .
[17] J. Cain,et al. Geomagnetic field analysis , 1989 .
[18] Per Christian Hansen,et al. Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank , 1990, SIAM J. Sci. Comput..
[19] T. Sekii. Two-Dimensional Inversion for Solar Internal Rotation , 1991 .
[20] Per Christian Hansen,et al. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..
[21] Spectral analysis of the full gravity tensor , 1992 .
[22] Per Christian Hansen,et al. The Modified Truncated SVD Method for Regularization in General Form , 1992, SIAM J. Sci. Comput..
[23] Peiliang Xu,et al. The value of minimum norm estimation of geopotential fields , 1992 .
[24] Dianne P. O'Leary,et al. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..
[25] R. Koop. Global gravity field modelling using satelite gravity gradiometry , 1993 .
[26] R. Parker. Geophysical Inverse Theory , 1994 .
[27] Peiliang Xu,et al. A Simulation Study of Smoothness Methods In Recovery of Regional Gravity Fields , 1994 .
[28] C. Vogel. Non-convergence of the L-curve regularization parameter selection method , 1996 .
[29] J. Scales. Uncertainties in seismic inverse calculations , 1996 .
[30] The success story of the transfer and development of methods from geophysics to helioseismology , 1996 .
[31] Regularization methods for almost rank-deficient nonlinear problems , 1996 .
[32] Teresa Reginska,et al. A Regularization Parameter in Discrete Ill-Posed Problems , 1996, SIAM J. Sci. Comput..
[33] The Status of Spaceborne Gravity Field Mission Concepts: A Comparative Simulation Study , 1997 .
[34] Problems and Prospects of the Planned Gravity Missions GOCE and Champ , 1997 .
[35] Jean-Charles Marty,et al. Long-wavelength global gravity field models: GRIM4-S4, GRIM4-C4 , 1997 .
[36] Bertrand Meyer,et al. Crustal thickening in Gansu‐Qinghai, lithospheric mantle subduction, and oblique, strike‐slip controlled growth of the Tibet plateau , 1998 .
[37] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .