On uniqueness of semi-wavefronts

Motivated by the uniqueness problem for monostable semi-wave-fronts, we propose a revised version of the Diekmann and Kaper theory of a nonlinear convolution equation. Our version of the Diekmann–Kaper theory allows (1) to consider new types of models which include nonlocal KPP type equations (with either symmetric or anisotropic dispersal), nonlocal lattice equations and delayed reaction–diffusion equations; (2) to incorporate the critical case (which corresponds to the slowest wavefronts) into the consideration; (3) to weaken or to remove various restrictions on kernels and nonlinearities. The results are compared with those of Schumacher (J Reine Angew Math 316: 54–70, 1980), Carr and Chmaj (Proc Am Math Soc 132: 2433–2439, 2004), and other more recent studies.

[1]  Junjie Wei,et al.  Uniqueness of traveling waves for nonlocal lattice equations , 2011 .

[2]  Jong-Shenq Guo,et al.  Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system , 2008 .

[3]  Jimmy Garnier,et al.  Accelerating Solutions in Integro-Differential Equations , 2010, SIAM J. Math. Anal..

[4]  Henri Berestycki,et al.  Travelling fronts in cylinders , 1992 .

[5]  Robert Kersner,et al.  Travelling Waves in Nonlinear Diffusion-Convection Reaction , 2004 .

[6]  Xinfu Chen,et al.  Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics , 2003 .

[7]  K. Schumacher Travelling-front solutions for integro-differential equations. I. , 1980 .

[8]  Sergei Trofimchuk,et al.  Uniqueness of fast travelling fronts in reaction–diffusion equations with delay , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  P. Bates,et al.  Traveling Waves in a Convolution Model for Phase Transitions , 1997 .

[10]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[11]  O. Diekmann,et al.  Thresholds and travelling waves for the geographical spread of infection , 1978, Journal of mathematical biology.

[12]  B. Zinner,et al.  Traveling wavefronts for the discrete Fisher's equation , 1993 .

[13]  Jong-Shenq Guo,et al.  Front propagation for discrete periodic monostable equations , 2006 .

[14]  S. Trofimchuk,et al.  Positive travelling fronts for reaction–diffusion systems with distributed delay , 2010, 1005.2786.

[15]  John Mallet-Paret,et al.  The Fredholm Alternative for Functional Differential Equations of Mixed Type , 1999 .

[16]  G. Ermentrout,et al.  Existence and uniqueness of travelling waves for a neural network , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[17]  Teresa Faria,et al.  Nonmonotone travelling waves in a single species reaction–diffusion equation with delay , 2005, math/0508098.

[18]  Jérôme Coville,et al.  On uniqueness and monotonicity of solutions of non-local reaction diffusion equation , 2006 .

[19]  Hiroki Yagisita,et al.  Existence and nonexistence of traveling waves for a nonlocal monostable equation , 2008, 0810.3317.

[20]  Chi-Tien Lin,et al.  Traveling wavefronts for time-delayed reaction-diffusion equation: (II) Nonlocal nonlinearity , 2009 .

[21]  Jack Carr,et al.  Uniqueness of travelling waves for nonlocal monostable equations , 2004 .

[22]  Jérôme Coville,et al.  On a non-local equation arising in population dynamics , 2007, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  O. Diekmann,et al.  On the bounded solutions of a nonlinear convolution equation , 1978 .

[24]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[25]  O. Diekmann On A Nonlinear Integral Equation Arising in Mathematical Epidemiology , 1977 .

[26]  Xinfu Chen,et al.  Uniqueness and Asymptotics of Traveling Waves of Monostable Dynamics on Lattices , 2006, SIAM J. Math. Anal..

[27]  A. N. Stokes On two types of moving front in quasilinear diffusion , 1976 .

[28]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[29]  Wenzhang Huang,et al.  Travelling waves for delayed reaction–diffusion equations with global response , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  A. Offord Introduction to the Theory of Fourier Integrals , 1938, Nature.

[31]  Jerome Coville,et al.  Nonlocal anisotropic dispersal with monostable nonlinearity , 2008, 1106.4531.

[32]  Wan-Tong Li,et al.  Traveling Fronts in Monostable Equations with Nonlocal Delayed Effects , 2008 .

[33]  Xiao-Qiang Zhao,et al.  Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models , 2003 .

[34]  W. Saarloos,et al.  Front propagation into unstable states : universal algebraic convergence towards uniformly translating pulled fronts , 2000, cond-mat/0003181.

[35]  K. Schumacher Travelling-Front Solutions for Integrodifferential Equations II , 1980 .

[36]  Xiao-Qiang Zhao,et al.  Existence and uniqueness of traveling waves for non-monotone integral equations with applications , 2010 .

[37]  Sergei Trofimchuk,et al.  Monotone traveling wavefronts of the KPP-Fisher delayed equation , 2010, 1001.3499.

[38]  Sergei Trofimchuk,et al.  On the geometry of wave solutions of a delayed reaction-diffusion equation , 2009 .

[39]  Shiwang Ma,et al.  Traveling waves for non-local delayed diffusion equations via auxiliary equations☆ , 2007 .

[40]  Sergei Trofimchuk,et al.  Slowly oscillating wave solutions of a single species reaction–diffusion equation with delay , 2008 .

[41]  Shiwang Ma,et al.  Existence, uniqueness and stability of travelling waves in a discrete reaction–diffusion monostable equation with delay , 2005 .

[42]  Jianhong Wu,et al.  Nonlocality of Reaction-Diffusion Equations Induced by Delay: Biological Modeling and Nonlinear Dynamics , 2004 .