Quantifying homo- and heteromolecular hydrogen bonds as a guide for adduct formation.

An investigation into the predictability of molecular adduct formation is presented by using the approach of hydrogen bond propensity. Along with the predictions, crystallisation reactions (1a-1j) were carried out between the anti-malarial drug pyrimethamine (1) and the acids oxalic (a), malonic (b), acetylenedicarboxylic (c), adipic (d), pimelic (e), suberic (f), azelaic acids (g), as well as hexachlorobenzene (h), 1,4-diiodobenzene (i), and 1,4-diiodotetrafluorobenzene (j); seven (1a to 1g) of these successfully formed salts. Five of these seven salts were found to be either hydrated or solvated. Hydrogen bond propensity calculations predict that hydrogen bonds between 1 and acids a-g are more likely to form rather than the H bonds involved in self-association, providing a rationale for the observation of the seven new salts. In contrast, propensity of hydrogen bonds between 1 and h-j is much smaller as compared to other bonds predicted for self-association/solvate formation, in agreement with the observed unsuccessful reactions.

[1]  Colin R. Groom,et al.  One in half a million: a solid form informatics study of a pharmaceutical crystal structure , 2012 .

[2]  P. Bag,et al.  Co-Crystals of Sulfamethazine with Some Carboxylic Acids and Amides: Co-Former Assisted Tautomerism in an Active Pharmaceutical Ingredient and Hydrogen Bond Competition Study , 2011 .

[3]  R. Suryanarayanan,et al.  Unintended water mediated cocrystal formation in carbamazepine and aspirin tablets. , 2011, Molecular pharmaceutics.

[4]  Christopher A. Hunter,et al.  Virtual cocrystal screening , 2011 .

[5]  Ranjit Thakuria,et al.  Highly soluble olanzapinium maleate crystalline salts , 2011 .

[6]  A. Rajbanshi,et al.  Mapping out the synthetic landscape for re-crystallization, co-crystallization and salt formation , 2010 .

[7]  L. Fábián,et al.  New solid forms of artemisinin obtained through cocrystallisation , 2010 .

[8]  William Jones,et al.  Benefits of cocrystallisation in pharmaceutical materials science: an update , 2010, The Journal of pharmacy and pharmacology.

[9]  D. Braga,et al.  Remarkable reversal of melting point alternation by co-crystallization , 2010 .

[10]  J. Steed,et al.  Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth , 2010, Nature Chemistry.

[11]  Geoff G. Z. Zhang,et al.  Pharmaceutical nano-cocrystals: sonochemical synthesis by solvent selection and use of a surfactant. , 2010, Angewandte Chemie.

[12]  G. Desiraju,et al.  Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring. , 2010, Journal of pharmaceutical sciences.

[13]  Miranda L. Cheney,et al.  Supramolecular Architectures of Meloxicam Carboxylic Acid Cocrystals, a Crystal Engineering Case Study , 2010 .

[14]  Peter T. A. Galek,et al.  The impact of accessible surface on hydrogen bond formation , 2010 .

[15]  Frank H. Allen,et al.  Truly prospective prediction: inter- and intramolecular hydrogen bonding , 2010 .

[16]  Peter T. A. Galek,et al.  Universal prediction of intramolecular hydrogen bonds in organic crystals. , 2010, Acta crystallographica. Section B, Structural science.

[17]  D. Good,et al.  Cocrystal Eutectic Constants and Prediction of Solubility Behavior , 2010 .

[18]  Miranda L. Cheney,et al.  Effects of Crystal Form on Solubility and Pharmacokinetics: A Crystal Engineering Case Study of Lamotrigine , 2010 .

[19]  Christer B. Aakeröy,et al.  Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. , 2009, Journal of the American Chemical Society.

[20]  Peter T. A. Galek,et al.  Knowledge-based H-bond prediction to aid experimental polymorph screening , 2009 .

[21]  William Jones,et al.  Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol , 2009 .

[22]  Naír Rodríguez-Hornedo,et al.  Understanding and Predicting the Effect of Cocrystal Components and pH on Cocrystal Solubility , 2009 .

[23]  Jose Fayos Molecular Crystal Prediction Approach by Molecular Similarity: Data Mining on Molecular Aggregation Predictors and Crystal Descriptors , 2009 .

[24]  B. Sarma,et al.  Synthon Competition and Cooperation in Molecular Salts of Hydroxybenzoic Acids and Aminopyridines , 2009 .

[25]  Tejender S. Thakur,et al.  Co-Crystals of the Anti-HIV Drugs Lamivudine and Zidovudine , 2009 .

[26]  László Fábián,et al.  Cambridge Structural Database Analysis of Molecular Complementarity in Cocrystals , 2009 .

[27]  P. Karamertzanis,et al.  Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? I. Comparison of Lattice Energies , 2009 .

[28]  Elies Molins,et al.  Effect of the Counterion on the Solubility of Isostructural Pharmaceutical Lamotrigine Salts , 2009 .

[29]  K. Arora,et al.  Hierarchy of Supramolecular Synthons: Persistent Carboxylic Acid···Pyridine Hydrogen Bonds in Cocrystals That also Contain a Hydroxyl Moiety , 2008 .

[30]  Tejender S. Thakur,et al.  Crystal Structure Prediction of a Co-Crystal Using a Supramolecular Synthon Approach: 2-Methylbenzoic Acid−2-Amino-4-methylpyrimidine , 2008 .

[31]  R. Davey,et al.  On the solubility of saccharinate salts and cocrystals , 2008 .

[32]  E. Suresh,et al.  pK(a)-directed host-guest assemblies: rational analysis of molecular adducts of 2,4-diamino-6-methyl-1,3,5-triazine with various aliphatic dicarboxylic acids. , 2008, Chemistry.

[33]  Peter T. A. Galek,et al.  Knowledge-based model of hydrogen-bonding propensity in organic crystals. , 2007, Acta crystallographica. Section B, Structural science.

[34]  Christer B Aakeröy,et al.  Constructing, deconstructing, and reconstructing ternary supermolecules. , 2007, Chemical communications.

[35]  T. Row,et al.  Hydrogen bonding in pyrimethamine hydrogen adipate , 2007 .

[36]  Orn Almarsson,et al.  Performance comparison of a co-crystal of carbamazepine with marketed product. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[37]  Christer B Aakeröy,et al.  Cocrystal or salt: does it really matter? , 2007, Molecular pharmaceutics.

[38]  Ron J Roberts,et al.  Structure, solubility, screening, and synthesis of molecular salts. , 2007, Journal of pharmaceutical sciences.

[39]  W. Jones,et al.  Screening for crystalline salts via mechanochemistry. , 2006, Chemical communications.

[40]  K. A. Padmanabhan,et al.  Structure−Property Correlations in Bending and Brittle Organic Crystals , 2006 .

[41]  G. Desiraju,et al.  Synthon robustness in saccharinate salts of some substituted pyridines , 2006 .

[42]  W. Motherwell,et al.  Physical stability enhancement of theophylline via cocrystallization. , 2006, International journal of pharmaceutics.

[43]  Aeri Park,et al.  Use of a Glutaric Acid Cocrystal to Improve Oral Bioavailability of a Low Solubility API , 2006, Pharmaceutical Research.

[44]  Frank H. Allen,et al.  Knowledge-based approaches to crystal design , 2006 .

[45]  E. Suresh,et al.  Nucleobases in molecular recognition: molecular adducts of adenine and cytosine with COOH functional groups. , 2005, Angewandte Chemie.

[46]  J. McMahon,et al.  Crystal engineering of pharmaceutical co-crystals from polymorphic active pharmaceutical ingredients. , 2005, Chemical communications.

[47]  Gautam R. Desiraju,et al.  Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities , 2005 .

[48]  A. Nangia,et al.  Tape and layer structures in cocrystals of some di- and tricarboxylic acids with 4,4′-bipyridines and isonicotinamide. From binary to ternary cocrystals , 2005 .

[49]  G. Desiraju,et al.  Saccharin as a salt former. Enhanced solubilities of saccharinates of active pharmaceutical ingredients. , 2005, Chemical communications.

[50]  William Jones,et al.  Pharmaceutical Cocrystallization: Engineering a Remedy for Caffeine Hydration , 2005 .

[51]  W. Motherwell,et al.  Hydrogen bond competition between chemical groups: new methodology and the Cambridge Structural Database , 2005 .

[52]  Christopher A. Hunter Zwischenmolekulare Wechselwirkungen in Lösung: eine vereinfachende Quantifizierungsmethode , 2004 .

[53]  C. Hunter,et al.  Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. , 2004, Angewandte Chemie.

[54]  Orn Almarsson,et al.  Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? , 2003, Chemical communications.

[55]  M. Winter,et al.  Isomorphism and Crystal Engineering: Organic Ionic Ladders Formed by Supramolecular Motifs in Pyrimethamine Salts , 2003 .

[56]  Orn Almarsson,et al.  Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. , 2003, Journal of the American Chemical Society.

[57]  J. McMahon,et al.  Crystal engineering of the composition of pharmaceutical phases. , 2003, Chemical communications.

[58]  W. Jones,et al.  Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. , 2002, Chemical communications.

[59]  P. Luger,et al.  Crystal Engineering of Organic Salts: Hydrogen-Bonded Supramolecular Motifs in Pyrimethamine Hydrogen Glutarate and Pyrimethamine Formate , 2002 .

[60]  P. Muthiah,et al.  Hydro­gen‐bonded supramolecular ribbons in the antifolate drug pyrimeth­amine , 2002 .

[61]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[62]  Gautam R. Desiraju Supramolekulare Synthone für das Kristall‐Engineering ‐ eine neue organische Synthese , 1995 .