Hopf algebras of formal diffeomorphisms and numerical integration on manifolds

B-series originated from the work of John Butcher in the 1960s as a tool to analyze numerical integration of differential equations, in particular Runge-Kutta methods. Connections to renormalization theory in perturbative quantum field theory have been established in recent years. The algebraic structure of classical Runge-Kutta methods is described by the Connes-Kreimer Hopf algebra. Lie-Butcher theory is a generalization of B-series aimed at studying Lie-group integrators for differential equations evolving on manifolds. Lie-group integrators are based on general Lie group actions on a manifold, and classical Runge-Kutta integrators appear in this setting as the special case of R^n acting upon itself by translations. Lie--Butcher theory combines classical B-series on R^n with Lie-series on manifolds. The underlying Hopf algebra combines the Connes-Kreimer Hopf algebra with the shuffle Hopf algebra of free Lie algebras. We give an introduction to Hopf algebraic structures and their relationship to structures appearing in numerical analysis, aimed at a general mathematical audience. In particular we explore the close connection between Lie series, time-dependent Lie series and Lie--Butcher series for diffeomorphisms on manifolds. The role of the Euler and Dynkin idempotents in numerical analysis is discussed. A non-commutative version of a Faa di Bruno bialgebra is introduced, and the relation to non-commutative Bell polynomials is explored.

[1]  H. Figueroa,et al.  Faa di Bruno Hopf algebras , 2005, math/0508337.

[2]  John C. Butcher,et al.  An algebraic theory of integration methods , 1972 .

[3]  H. Munthe-Kaas Runge-Kutta methods on Lie groups , 1998 .

[4]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[5]  Hans Z. Munthe-Kaas,et al.  Foundations of Computational Mathematics on the Hopf Algebraic Structure of Lie Group Integrators , 2022 .

[6]  A. Murua Formal series and numerical integrators, part I: Systems of ODEs and symplectic integrators , 1999 .

[7]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[8]  Hector Figueroa,et al.  Combinatorial Hopf algebras in quantum field theory. I , 2005 .

[9]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[10]  P. Crouch,et al.  Numerical integration of ordinary differential equations on manifolds , 1993 .

[11]  Arne Dür,et al.  Mobius Functions, Incidence Algebras and Power Series Representations , 1986 .

[12]  Salvatore Monaco,et al.  From Chronological Calculus to Exponential Representations of Continuous and Discrete-Time Dynamics: A Lie-Algebraic Approach , 2007, IEEE Transactions on Automatic Control.

[13]  H. Munthe-Kaas Lie-Butcher theory for Runge-Kutta methods , 1995 .

[14]  Ander Murua,et al.  The Hopf Algebra of Rooted Trees, Free Lie Algebras, and Lie Series , 2006, Found. Comput. Math..

[15]  Christian Brouder,et al.  Runge–Kutta methods and renormalization , 2000 .

[16]  F. Patras,et al.  A Lie Theoretic Approach to Renormalization , 2006, hep-th/0609035.

[17]  Ernst Hairer,et al.  Numerical integrators based on modified differential equations , 2007, Math. Comput..

[18]  Jean-Louis Loday,et al.  Combinatorial Hopf algebras , 2008, 0810.0435.

[19]  L. Foissy Fa\`a di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations , 2007 .

[20]  Kurusch Ebrahimi-Fard,et al.  Two Hopf algebras of trees interacting , 2008 .

[21]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[22]  E. Burgunder Eulerian idempotent and Kashiwara-Vergne conjecture , 2006, math/0612548.

[23]  Christian Krattenthaler,et al.  Non-commutative Hopf algebra of formal diffeomorphisms , 2004 .

[24]  Brynjulf Owren,et al.  Order conditions for commutator-free Lie group methods , 2006 .

[25]  Nellie Clarke Brown Trees , 1896, Savage Dreams.

[26]  Kurusch Ebrahimi-Fard,et al.  A Magnus- and Fer-Type Formula in Dendriform Algebras , 2007, Found. Comput. Math..

[27]  Pierre Cartier,et al.  A Primer of Hopf Algebras , 2007 .

[28]  Arne Marthinsen,et al.  Runge-Kutta Methods Adapted to Manifolds and Based on Rigid Frames , 1999 .

[29]  Loic Foissy,et al.  Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations , 2007, 0707.1204.

[30]  Gilles Vilmart Étude d'intégrateurs géométriques pour des équations différentielles , 2008 .

[31]  D. Manchon Hopf algebras, from basics to applications to renormalization , 2004, math/0408405.

[32]  Arthur Cayley,et al.  The Collected Mathematical Papers: On the Theory of the Analytical Forms called Trees , 2009 .

[33]  A noncommutative limit theorem for homogeneous correlations , 1998 .

[34]  Ander Murua,et al.  An algebraic theory of order , 2009 .

[35]  E. Celledoni Lie group methods , 2009 .

[36]  H. Munthe-Kaas,et al.  Computations in a free Lie algebra , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  A. Iserles,et al.  On the solution of linear differential equations in Lie groups , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Kurusch Ebrahimi-Fard,et al.  Two interacting Hopf algebras of trees: A Hopf-algebraic approach to composition and substitution of B-series , 2008, Adv. Appl. Math..

[39]  A. Iserles,et al.  On the Implementation of the Method of Magnus Series for Linear Differential Equations , 1999 .

[40]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.

[41]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[42]  Ernst Hairer,et al.  On the Butcher group and general multi-value methods , 1974, Computing.

[43]  Stein Krogstad,et al.  On enumeration problems in Lie-Butcher theory , 2003, Future Gener. Comput. Syst..

[44]  C. Brouder,et al.  Trees, Renormalization and Differential Equations , 2004 .

[45]  Brynjulf Owren,et al.  Norges Teknisk-naturvitenskapelige Universitet Algebraic Structures on Ordered Rooted Trees and Their Significance to Lie Group Integrators , 2022 .

[46]  Elena Celledoni,et al.  Commutator-free Lie group methods , 2003, Future Gener. Comput. Syst..

[47]  Christophe Reutenauer,et al.  On Dynkin and Klyachko Idempotents in Graded Bialgebras , 2002, Adv. Appl. Math..