Abstract A simple approximate procedure is presented to estimate the maximum response of equipment, piping, or any other light secondary system mounted on nonlinear structures subjected to earthquake ground motions. The procedure is based on the consideration of structure and equipment as an integrated combined system, and on a response spectrum method for the analysis of nonlinear multistory structures. It is formulated in terms of the initial dynamic properties of the independent structure and equipment components, and the nonlinear response spectrum of a specified earthquake ground motion. It may be applied to any linear multiple-degree-of-freedom secondary system connected at one or two arbitrary points of a multistory structure. It fully takes into account the interaction between primary and secondary systems and the nonclassical damping character of structure-equipment systems. It is restricted, however, to structures with elastoplastic load-deformation behavior and to those cases in which the mass of the secondary system is small in comparison with the mass of the structure. Its accuracy is evaluated by means of a comparative study with the numerical integration solutions of a number of idealized systems. In this comparative study, the proposed procedure estimates the numerical integration solutions with an average error of about 2%.