Evolution of biomolecular networks — lessons from metabolic and protein interactions

[1]  Sergei Maslov,et al.  Toolbox model of evolution of prokaryotic metabolic networks and their regulation , 2009, Proceedings of the National Academy of Sciences.

[2]  Jan O. Korbel,et al.  Quantifying environmental adaptation of metabolic pathways in metagenomics , 2009, Proceedings of the National Academy of Sciences.

[3]  R. Conaway,et al.  The INO80 chromatin remodeling complex in transcription, replication and repair. , 2009, Trends in biochemical sciences.

[4]  Like Fokkens,et al.  Cohesive versus Flexible Evolution of Functional Modules in Eukaryotes , 2009, PLoS Comput. Biol..

[5]  Erik van Nimwegen,et al.  The evolution of domain-content in bacterial genomes , 2008, Biology Direct.

[6]  Bianca Habermann,et al.  Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment , 2008, Genome Biology.

[7]  Dirk Walther,et al.  The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles , 2008, BMC Syst. Biol..

[8]  Sarath Chandra Janga,et al.  Network-based approaches for linking metabolism with environment , 2008, Genome Biology.

[9]  Christian von Mering,et al.  STRING 8—a global view on proteins and their functional interactions in 630 organisms , 2008, Nucleic Acids Res..

[10]  Sean R. Collins,et al.  Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast , 2008, Science.

[11]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[12]  Peer Bork,et al.  Not Comparable, But Complementary , 2008, Science.

[13]  M. Feldman,et al.  Large-scale reconstruction and phylogenetic analysis of metabolic environments , 2008, Proceedings of the National Academy of Sciences.

[14]  Andrea Ciliberto,et al.  Low duplicability and network fragility of cancer genes. , 2008, Trends in genetics : TIG.

[15]  C. Landry,et al.  An in Vivo Map of the Yeast Protein Interactome , 2008, Science.

[16]  Adam M. Feist,et al.  The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli , 2008, Nature Biotechnology.

[17]  Anat Kreimer,et al.  The evolution of modularity in bacterial metabolic networks , 2008, Proceedings of the National Academy of Sciences.

[18]  Jan O. Korbel,et al.  Positive selection at the protein network periphery: Evaluation in terms of structural constraints and cellular context , 2007, Proceedings of the National Academy of Sciences.

[19]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[20]  Peer Bork,et al.  Genome-Wide Experimental Determination of Barriers to Horizontal Gene Transfer , 2007, Science.

[21]  Thorsten Henrich,et al.  4DXpress: a database for cross-species expression pattern comparisons , 2007, Nucleic Acids Res..

[22]  U. Alon,et al.  Environmental variability and modularity of bacterial metabolic networks , 2007, BMC Evolutionary Biology.

[23]  Nevan J Krogan,et al.  High-throughput genetic interaction mapping in the fission yeast Schizosaccharomyces pombe , 2007, Nature Methods.

[24]  Lindsey Leach,et al.  Impacts of yeast metabolic network structure on enzyme evolution , 2007, Genome Biology.

[25]  Wen-Hsiung Li,et al.  Gene essentiality, gene duplicability and protein connectivity in human and mouse. , 2007, Trends in genetics : TIG.

[26]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[27]  C. Gustafsson,et al.  A genome‐wide role for CHD remodelling factors and Nap1 in nucleosome disassembly , 2007, The EMBO journal.

[28]  J. J. Díaz-Mejía,et al.  A network perspective on the evolution of metabolism by gene duplication , 2007, Genome Biology.

[29]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[30]  P. Bork,et al.  Identification of tightly regulated groups of genes during Drosophila melanogaster embryogenesis , 2007, Molecular systems biology.

[31]  P. Bork,et al.  Prediction of effective genome size in metagenomic samples , 2007, Genome Biology.

[32]  Parantu K. Shah,et al.  Computational characterization of multiple Gag-like human proteins. , 2006, Trends in genetics : TIG.

[33]  P. Bork,et al.  Co-evolution of transcriptional and post-translational cell-cycle regulation , 2006, Nature.

[34]  A. Elofsson,et al.  What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? , 2006, Genome Biology.

[35]  Andrey A Mironov,et al.  A metabolic network in the evolutionary context: multiscale structure and modularity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Kanaya,et al.  Large-scale identification of protein-protein interaction of Escherichia coli K-12. , 2006, Genome research.

[37]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[38]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[39]  Susumu Goto,et al.  Extraction of phylogenetic network modules from the metabolic network , 2006, BMC Bioinformatics.

[40]  P. Bork,et al.  Identification and analysis of evolutionarily cohesive functional modules in protein networks. , 2006, Genome research.

[41]  C. Wilke,et al.  A single determinant dominates the rate of yeast protein evolution. , 2006, Molecular biology and evolution.

[42]  K. Luger,et al.  The structure of nucleosome assembly protein 1 , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Workman,et al.  In and out: histone variant exchange in chromatin. , 2005, Trends in biochemical sciences.

[44]  C. Ouzounis,et al.  Expansion of the BioCyc collection of pathway/genome databases to 160 genomes , 2005, Nucleic acids research.

[45]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[46]  U. Alon,et al.  Spontaneous evolution of modularity and network motifs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[48]  Peer Bork,et al.  Towards Cellular Systems in 4D , 2005, Cell.

[49]  Stefan R. Henz,et al.  A gene expression map of Arabidopsis thaliana development , 2005, Nature Genetics.

[50]  Matthew W. Hahn,et al.  Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. , 2005, Molecular biology and evolution.

[51]  Hunter B. Fraser,et al.  Modularity and evolutionary constraint on proteins , 2005, Nature Genetics.

[52]  M. Suyama,et al.  Complex genomic rearrangements lead to novel primate gene function. , 2005, Genome research.

[53]  D. Botstein,et al.  A DNA microarray survey of gene expression in normal human tissues , 2005, Genome Biology.

[54]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[55]  P. Bork,et al.  Dynamic Complex Formation During the Yeast Cell Cycle , 2005, Science.

[56]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[57]  K. Luger,et al.  Nucleosome Assembly Protein 1 Exchanges Histone H2A-H2B Dimers and Assists Nucleosome Sliding* , 2005, Journal of Biological Chemistry.

[58]  Dongxiao Zhu,et al.  BMC Bioinformatics BioMed Central , 2005 .

[59]  Lincoln Stein,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Res..

[60]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[61]  S. Wuchty Evolution and topology in the yeast protein interaction network. , 2004, Genome research.

[62]  B. Snel,et al.  The yeast coexpression network has a small‐world, scale‐free architecture and can be explained by a simple model , 2004, EMBO reports.

[63]  Berend Snel,et al.  Quantifying modularity in the evolution of biomolecular systems. , 2004, Genome research.

[64]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[65]  P. Bork,et al.  Genome evolution reveals biochemical networks and functional modules , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[67]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  R. Karp,et al.  Conserved pathways within bacteria and yeast as revealed by global protein network alignment , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  P. Bork,et al.  Metabolites: a helping hand for pathway evolution? , 2003, Trends in biochemical sciences.

[70]  J. Hudson,et al.  C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression , 2003, Nature Genetics.

[71]  A. Arkin,et al.  Motifs, modules and games in bacteria. , 2003, Current opinion in microbiology.

[72]  M. Ashburner,et al.  Systematic determination of patterns of gene expression during Drosophila embryogenesis , 2002, Genome Biology.

[73]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[74]  A. Wagner,et al.  Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications , 2002, BMC Evolutionary Biology.

[75]  Michael J E Sternberg,et al.  Evolution of enzymes in metabolism: a network perspective. , 2002, Journal of molecular biology.

[76]  A. Wagner How the global structure of protein interaction networks evolves , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[77]  Janet M Thornton,et al.  Pathway evolution, structurally speaking. , 2002, Current opinion in structural biology.

[78]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[79]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[80]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[81]  Gary D Bader,et al.  Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry , 2002, Nature.

[82]  C. Chothia,et al.  The evolution and structural anatomy of the small molecule metabolic pathways in Escherichia coli. , 2001, Journal of molecular biology.

[83]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[84]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[86]  H. McAdams,et al.  Global analysis of the genetic network controlling a bacterial cell cycle. , 2000, Science.

[87]  F. Hartl,et al.  Structure of the Molecular Chaperone Prefoldin Unique Interaction of Multiple Coiled Coil Tentacles with Unfolded Proteins , 2000, Cell.

[88]  P. Bork,et al.  Homology among (betaalpha)(8) barrels: implications for the evolution of metabolic pathways. , 2000, Journal of molecular biology.

[89]  P. Bork,et al.  Homology among (βα) 8 barrels: implications for the evolution of metabolic pathways 1 1Edited by G. Von Heijne , 2000 .

[90]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[91]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[92]  Stanley L. Miller,et al.  On the Origin of Metabolic Pathways , 1999, Journal of Molecular Evolution.

[93]  Roger D Kornberg,et al.  Histone Octamer Transfer by a Chromatin-Remodeling Complex , 1999, Cell.

[94]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[95]  D A Fell,et al.  A computer program for the algebraic determination of control coefficients in Metabolic Control Analysis. , 1993, The Biochemical journal.

[96]  D. Fell,et al.  Metabolic control and its analysis , 1985 .

[97]  M. Yčas,et al.  On earlier states of the biochemical system. , 1974, Journal of theoretical biology.

[98]  N H Horowitz,et al.  On the Evolution of Biochemical Syntheses. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[99]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[100]  D. Segrè,et al.  Supporting Online Material Materials and Methods Tables S1 and S2 References the Effect of Oxygen on Biochemical Networks and the Evolution of Complex Life , 2022 .

[101]  Wen-Hsiung Li,et al.  Protein function, connectivity, and duplicability in yeast. , 2006, Molecular biology and evolution.

[102]  J. Rothberg,et al.  Gaining confidence in high-throughput protein interaction networks , 2004, Nature Biotechnology.

[103]  Jan Ihmels,et al.  Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae , 2004, Nature Biotechnology.

[104]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[105]  B. Snel,et al.  Genomes in flux: the evolution of archaeal and proteobacterial gene content. , 2002, Genome research.

[106]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[107]  P. ERDbS ON THE STRENGTH OF CONNECTEDNESS OF A RANDOM GRAPH , 2001 .

[108]  A. Barabasi,et al.  Emergence of Scaling in Random Networks , 1999 .

[109]  D A Fell,et al.  Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. , 1985, European journal of biochemistry.

[110]  R. Jensen Enzyme recruitment in evolution of new function. , 1976, Annual review of microbiology.