Local eigenvalue statistics of one-dimensional random nonselfadjoint pseudodifferential operators

We study a class of one-dimensional non-selfadjoint semiclassical elliptic pseudo-differential operators subject to small random perturbations. We compare two types of random perturbation: random potential and random matrix. It is known by recent works of Sj\"ostrand and Hager that, under suitable conditions on the law of the perturbation, the eigenvalues of the perturbed operator contained in the interior of the pseudospectrum will follow Weyl-asymptotics with probability close to one. We show that in the limit of the semiclassical parameter $h\to 0$, the local statistics of the eigenvalues of the perturbed operator in the interior of the pseudospectrum is universal in the sense that it only depends on the type of random perturbation and the principal symbol of the unperturbed operator. It is, however, independent of the law of the perturbation.

[1]  Semiclassical analysis , 2019, Graduate Studies in Mathematics.

[2]  J. Sjöstrand Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations , 2019, Pseudo-Differential Operators.

[3]  Y. Fyodorov Random Matrix Theory of resonances: An overview , 2016, URSI International Symposium on Electromagnetic Theory.

[4]  Martin Vogel Two Point Eigenvalue Correlation for a Class of Non-Selfadjoint Operators Under Random Perturbations , 2014, 1412.0414.

[5]  Charles Bordenave,et al.  Outlier Eigenvalues for Deformed I.I.D. Random Matrices , 2014, 1403.6001.

[6]  Martin Vogel The Precise Shape of the Eigenvalue Intensity for a Class of Non-Self-Adjoint Operators Under Random Perturbations , 2014, 1401.8134.

[7]  J. Galkowski Pseudospectra of semiclassical boundary value problems , 2012, Journal of the Institute of Mathematics of Jussieu.

[8]  T. Shirai Limit theorems for random analytic functions and their zeros : Dedicated to the late Professor Yasunori Okabe (Functions in Number Theory and Their Probabilistic Aspects) , 2012 .

[9]  H. Yau,et al.  Local circular law for random matrices , 2012, 1206.1449.

[10]  A Goetschy,et al.  Non-Hermitian Euclidean random matrix theory. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  F. Nazarov,et al.  Correlation Functions for Random Complex Zeroes: Strong Clustering and Local Universality , 2010, 1005.4113.

[12]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[13]  M. Zworski,et al.  Probabilistic Weyl Laws for Quantized Tori , 2009, 0909.2014.

[14]  Terence Tao,et al.  Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.

[15]  Johannes Sjoestrand Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations , 2008, 0809.4182.

[16]  J. Sjoestrand Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations , 2008, 0802.3584.

[17]  J. Keating,et al.  Model for chaotic dielectric microresonators , 2007, 0710.0227.

[18]  E. Davies,et al.  Perturbations of Jordan matrices , 2006, J. Approx. Theory.

[19]  Mildred Hager Instabilité Spectrale Semiclassique d’Opérateurs Non-Autoadjoints II , 2006 .

[20]  J. Sjöstrand,et al.  Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators , 2006, math/0601381.

[21]  M. Zworski,et al.  Pseudospectra of semiclassical (pseudo‐) differential operators , 2004 .

[22]  D. Tataru,et al.  L^p eigenfunction bounds for the Hermite operator , 2004, math/0402261.

[23]  J. Sjoestrand,et al.  Elementary linear algebra for advanced spectral problems , 2003, math/0312166.

[24]  H. Sommers,et al.  Truncations of random unitary matrices , 1999, chao-dyn/9910032.

[25]  S. Zelditch,et al.  Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.

[26]  E. Davies,et al.  Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[28]  Y. Fyodorov,et al.  Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .

[29]  J. Hannay,et al.  Chaotic analytic zero points: exact statistics for those of a random spin state , 1996 .

[30]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[31]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[32]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[33]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[34]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[35]  Katrin Baumgartner,et al.  Introduction To Complex Analysis In Several Variables , 2016 .

[36]  Mildred Hager Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle , 2006 .

[37]  A. Scheel,et al.  Basin boundaries and bifurcations near convective instabilities: a case study , 2005 .

[38]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[39]  M. Dimassi,et al.  Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .

[40]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[41]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[42]  J. Sjöstrand,et al.  Fourier integral operators with complex-valued phase functions , 1975 .

[43]  J. Combes,et al.  A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .

[44]  Louis Nirenberg,et al.  A proof of the malgrange preparation theorem , 1971 .

[45]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .