Local eigenvalue statistics of one-dimensional random nonselfadjoint pseudodifferential operators
暂无分享,去创建一个
[1] Semiclassical analysis , 2019, Graduate Studies in Mathematics.
[2] J. Sjöstrand. Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations , 2019, Pseudo-Differential Operators.
[3] Y. Fyodorov. Random Matrix Theory of resonances: An overview , 2016, URSI International Symposium on Electromagnetic Theory.
[4] Martin Vogel. Two Point Eigenvalue Correlation for a Class of Non-Selfadjoint Operators Under Random Perturbations , 2014, 1412.0414.
[5] Charles Bordenave,et al. Outlier Eigenvalues for Deformed I.I.D. Random Matrices , 2014, 1403.6001.
[6] Martin Vogel. The Precise Shape of the Eigenvalue Intensity for a Class of Non-Self-Adjoint Operators Under Random Perturbations , 2014, 1401.8134.
[7] J. Galkowski. Pseudospectra of semiclassical boundary value problems , 2012, Journal of the Institute of Mathematics of Jussieu.
[8] T. Shirai. Limit theorems for random analytic functions and their zeros : Dedicated to the late Professor Yasunori Okabe (Functions in Number Theory and Their Probabilistic Aspects) , 2012 .
[9] H. Yau,et al. Local circular law for random matrices , 2012, 1206.1449.
[10] A Goetschy,et al. Non-Hermitian Euclidean random matrix theory. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] F. Nazarov,et al. Correlation Functions for Random Complex Zeroes: Strong Clustering and Local Universality , 2010, 1005.4113.
[12] Yuval Peres,et al. Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.
[13] M. Zworski,et al. Probabilistic Weyl Laws for Quantized Tori , 2009, 0909.2014.
[14] Terence Tao,et al. Bulk universality for Wigner hermitian matrices with subexponential decay , 2009, 0906.4400.
[15] Johannes Sjoestrand. Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations , 2008, 0809.4182.
[16] J. Sjoestrand. Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations , 2008, 0802.3584.
[17] J. Keating,et al. Model for chaotic dielectric microresonators , 2007, 0710.0227.
[18] E. Davies,et al. Perturbations of Jordan matrices , 2006, J. Approx. Theory.
[19] Mildred Hager. Instabilité Spectrale Semiclassique d’Opérateurs Non-Autoadjoints II , 2006 .
[20] J. Sjöstrand,et al. Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators , 2006, math/0601381.
[21] M. Zworski,et al. Pseudospectra of semiclassical (pseudo‐) differential operators , 2004 .
[22] D. Tataru,et al. L^p eigenfunction bounds for the Hermite operator , 2004, math/0402261.
[23] J. Sjoestrand,et al. Elementary linear algebra for advanced spectral problems , 2003, math/0312166.
[24] H. Sommers,et al. Truncations of random unitary matrices , 1999, chao-dyn/9910032.
[25] S. Zelditch,et al. Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.
[26] E. Davies,et al. Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[27] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[28] Y. Fyodorov,et al. Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance , 1997 .
[29] J. Hannay,et al. Chaotic analytic zero points: exact statistics for those of a random spin state , 1996 .
[30] O. Bohigas,et al. Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .
[31] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[32] J. Ginibre. Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .
[33] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .
[34] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[35] Katrin Baumgartner,et al. Introduction To Complex Analysis In Several Variables , 2016 .
[36] Mildred Hager. Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle , 2006 .
[37] A. Scheel,et al. Basin boundaries and bifurcations near convective instabilities: a case study , 2005 .
[38] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[39] M. Dimassi,et al. Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .
[40] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[41] Joe W. Harris,et al. Principles of Algebraic Geometry , 1978 .
[42] J. Sjöstrand,et al. Fourier integral operators with complex-valued phase functions , 1975 .
[43] J. Combes,et al. A class of analytic perturbations for one-body Schrödinger Hamiltonians , 1971 .
[44] Louis Nirenberg,et al. A proof of the malgrange preparation theorem , 1971 .
[45] F. Dyson. Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .