Bilinear Generalized Approximate Message Passing—Part II: Applications

In this paper, we extend the generalized approximate message passing (G-AMP) approach, originally proposed for high-dimensional generalized-linear regression in the context of compressive sensing, to the generalized-bilinear case. In Part I of this two-part paper, we derived our Bilinear G-AMP (BiG-AMP) algorithm as an approximation of the sum-product belief propagation algorithm in the high-dimensional limit, and proposed an adaptive damping mechanism that aids convergence under finite problem sizes, an expectation-maximization (EM)-based method to automatically tune the parameters of the assumed priors, and two rank-selection strategies. Here, in Part II, we discuss the specializations of BiG-AMP to the problems of matrix completion, robust PCA, and dictionary learning, and present the results of an extensive empirical study comparing BiG-AMP to state-of-the-art algorithms on each problem. Our numerical results, using both synthetic and real-world datasets, demonstrate that EM-BiG-AMP yields excellent reconstruction accuracy (often best in class) while maintaining competitive runtimes.

[1]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[2]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[3]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[4]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[5]  Yew Jin Lim Variational Bayesian Approach to Movie Rating Prediction , 2007 .

[6]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[7]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[8]  Neil D. Lawrence,et al.  Non-linear matrix factorization with Gaussian processes , 2009, ICML '09.

[9]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.

[10]  Andrea Montanari,et al.  Message passing algorithms for compressed sensing: I. motivation and construction , 2009, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[11]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[12]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[13]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[14]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[15]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[16]  Philip Schniter Approximate Message Passing for Bilinear Models , 2011 .

[17]  John C. S. Lui,et al.  Online Robust Subspace Tracking from Partial Information , 2011, ArXiv.

[18]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[19]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[20]  Huan Wang,et al.  Exact Recovery of Sparsely-Used Dictionaries , 2012, COLT.

[21]  Aggelos K. Katsaggelos,et al.  Sparse Bayesian Methods for Low-Rank Matrix Estimation , 2011, IEEE Transactions on Signal Processing.

[22]  Goran Marjanovic,et al.  On $l_q$ Optimization and Matrix Completion , 2012, IEEE Transactions on Signal Processing.

[23]  Philip Schniter,et al.  Expectation-Maximization Gaussian-Mixture Approximate Message Passing , 2012, IEEE Transactions on Signal Processing.

[24]  Philip Schniter,et al.  Hyperspectral image unmixing via bilinear generalized approximate message passing , 2013, Defense, Security, and Sensing.

[25]  Florent Krzakala,et al.  Phase diagram and approximate message passing for blind calibration and dictionary learning , 2013, 2013 IEEE International Symposium on Information Theory.

[26]  Volkan Cevher,et al.  Matrix Recipes for Hard Thresholding Methods , 2012, Journal of Mathematical Imaging and Vision.

[27]  Volkan Cevher,et al.  Bilinear Generalized Approximate Message Passing—Part I: Derivation , 2013, IEEE Transactions on Signal Processing.