Schwarz-preconditioned HMC algorithm for two-flavor lattice QCD

Abstract The combination of a non-overlapping Schwarz preconditioner and the Hybrid Monte Carlo (HMC) algorithm is shown to yield an efficient simulation algorithm for two-flavor lattice QCD with Wilson quarks. Extensive tests are performed, on lattices of size up to 32 × 24 3 , with lattice spacings a ≃ 0.08 fm and at bare current-quark masses as low as 21 MeV .

[1]  Ulli Wolff Monte Carlo errors with less errors , 2004 .

[2]  Gunnar S. Bali,et al.  Static potentials and glueball masses from QCD simulations with Wilson sea quarks , 2000 .

[3]  F. Knechtli,et al.  Simulating the Schrodinger functional with two pseudo-fermions: algorithmic study and the running mass☆ , 2004 .

[4]  N. Eicker,et al.  Light and Strange Hadron Spectroscopy with Dynamical Wilson Fermions , 1998 .

[5]  Speeding up lattice QCD simulations with clover improved Wilson fermions , 2003, hep-lat/0211042.

[6]  SESAM and TχL results for Wilson action—A status report , 1998, hep-lat/9707004.

[7]  On-shell improved lattice gauge theories , 1985 .

[8]  K. Wilson Confinement of Quarks , 1974 .

[9]  Speeding up the hybrid Monte Carlo algorithm for dynamical fermions , 2001, hep-lat/0107019.

[10]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[11]  Mike Peardon,et al.  Multiple molecular dynamics time scales in hybrid Monte Carlo fermion simulations , 2002 .

[12]  Peter Weisz,et al.  Chiral symmetry and O(a) improvement in lattice QCD , 1996 .

[13]  Martin Lüscher,et al.  Solution of the Dirac equation in lattice QCD using a domain decomposition method , 2004 .

[14]  Yoichi Iwasaki,et al.  Renormalization group analysis of lattice theories and improved lattice action: Two-dimensional non-linear O(N) sigma model , 1985 .

[15]  H. Wittig,et al.  Numerical techniques for lattice QCD in the ϵ-regime , 2002 .

[16]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[17]  Th. Lippert,et al.  Finite-Size Effects in Lattice QCD with Dynamical Wilson Fermions , 2005 .

[18]  R. Sommer A new way to set the energy scale in lattice gauge theories and its application to the static force and σs in SU (2) Yang-Mills theory , 1994 .

[19]  J. Sexton,et al.  Hamiltonian evolution for the hybrid Monte Carlo algorithm , 1992 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  B. Sheikholeslami,et al.  Improved continuum limit lattice action for QCD with wilson fermions , 1985 .

[22]  M. Fukugita,et al.  Light hadron spectroscopy with two flavors of O(a)-improved dynamical quarks , 2003 .

[23]  Th. Lippert,et al.  A parallel SSOR preconditioner for lattice QCD , 1996, hep-lat/9608066.

[24]  A. Sokal,et al.  The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .

[25]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[26]  Khan,et al.  Dynamical quark effects on light quark masses , 2000, Physical review letters.

[27]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .