Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery

[1]  Rodney Rothstein,et al.  Increased chromosome mobility facilitates homology search during recombination , 2012, Nature Cell Biology.

[2]  Monika Tsai-Pflugfelder,et al.  Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. , 2012, Genes & development.

[3]  S. Gasser,et al.  How Broken DNA Finds Its Template for Repair : A Computational Approach(Statistical Physics and Topology of Polymers with Ramifications to Structure and Function of DNA and Proteins) , 2011 .

[4]  Angela T. Noon,et al.  53BP1-mediated DNA double strand break repair: insert bad pun here. , 2011, DNA Repair.

[5]  Aki Minoda,et al.  Double-Strand Breaks in Heterochromatin Move Outside of a Dynamic HP1a Domain to Complete Recombinational Repair , 2011, Cell.

[6]  O. Mazina,et al.  Rad54, the motor of homologous recombination. , 2010, DNA repair.

[7]  M. Lisby,et al.  A Flp-nick system to study repair of a single protein-bound nick in vivo , 2009, Nature Methods.

[8]  L. Aragón,et al.  The Dot1 Histone Methyltransferase and the Rad9 Checkpoint Adaptor Contribute to Cohesin-Dependent Double-Strand Break Repair by Sister Chromatid Recombination in Saccharomyces cerevisiae , 2009, Genetics.

[9]  R. Rothstein,et al.  Rad52 recruitment is DNA replication independent and regulated by Cdc28 and the Mec1 kinase , 2009, The EMBO journal.

[10]  G. Taucher‐Scholz,et al.  Positional Stability of Damaged Chromatin Domains along Radiation Tracks in Mammalian Cells , 2009, Radiation research.

[11]  M. Durante,et al.  Live cell microscopy analysis of radiation-induced DNA double-strand break motion , 2009, Proceedings of the National Academy of Sciences.

[12]  Steven S. Foster,et al.  Maintenance of the DNA-damage checkpoint requires DNA-damage-induced mediator protein oligomerization. , 2009, Molecular cell.

[13]  D. Spector,et al.  53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility , 2008, Nature.

[14]  Grant W. Brown,et al.  Functional Targeting of DNA Damage to a Nuclear Pore-Associated SUMO-Dependent Ubiquitin Ligase , 2008, Science.

[15]  K. Dubrana,et al.  The processing of double-strand breaks and binding of single-strand-binding proteins RPA and Rad51 modulate the formation of ATR-kinase foci in yeast , 2007, Journal of Cell Science.

[16]  Robert J. D. Reid,et al.  The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus , 2007, Nature Cell Biology.

[17]  Gaudenz Danuser,et al.  Positional stability of single double-strand breaks in mammalian cells , 2007, Nature Cell Biology.

[18]  Asheesh Gulati,et al.  Huygens Remote Manager , 2007 .

[19]  Y. Kaneko,et al.  Chromosome XII context is important for rDNA function in yeast , 2006, Nucleic Acids Research.

[20]  James G. McNally,et al.  Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks , 2006, The Journal of cell biology.

[21]  Michael Unser,et al.  Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics , 2005, IEEE Transactions on Image Processing.

[22]  D. Durocher,et al.  Saccharomyces cerevisiae Rad9 Acts as a Mec1 Adaptor to Allow Rad53 Activation , 2005, Current Biology.

[23]  S. Gasser,et al.  Sir-Mediated Repression Can Occur Independently of Chromosomal and Subnuclear Contexts , 2004, Cell.

[24]  R. Rothstein,et al.  Choreography of the DNA Damage Response Spatiotemporal Relationships among Checkpoint and Repair Proteins , 2004, Cell.

[25]  T. Halazonetis,et al.  53BP1, an activator of ATM in response to DNA damage. , 2004, DNA repair.

[26]  S. Jackson,et al.  MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. , 2004, DNA repair.

[27]  J. Aten,et al.  Dynamics of DNA Double-Strand Breaks Revealed by Clustering of Damaged Chromosome Domains , 2004, Science.

[28]  Stephen J. Elledge,et al.  Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA Complexes , 2003, Science.

[29]  Rodney Rothstein,et al.  Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre , 2003, Nature Cell Biology.

[30]  T. Weinert,et al.  Toward maintaining the genome: DNA damage and replication checkpoints. , 2002, Annual review of genetics.

[31]  M. Frank-Vaillant,et al.  Transient stability of DNA ends allows nonhomologous end joining to precede homologous recombination. , 2002, Molecular cell.

[32]  S. Gasser,et al.  Chromosome Dynamics in the Yeast Interphase Nucleus , 2001, Science.

[33]  J. Haber,et al.  Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. , 2001, Molecular cell.

[34]  W. Heyer,et al.  Specific negative effects resulting from elevated levels of the recombinational repair protein Rad54p in Saccharomyces cerevisiae , 1999, Yeast.

[35]  J. Vialard,et al.  The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1‐dependent hyperphosphorylation and interacts with Rad53 after DNA damage , 1998, The EMBO journal.

[36]  R Rothstein,et al.  A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. , 1998, Molecular cell.

[37]  M. Lagally,et al.  In situ visualization of DNA double-strand break repair in human fibroblasts. , 1998, Science.

[38]  Andrew W. Murray,et al.  GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion , 1996, Current Biology.

[39]  J R Savage,et al.  Insight into sites. , 1996, Mutation research.

[40]  L. Povirk,et al.  DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. , 1996, Mutation research.

[41]  M. Resnick,et al.  Lethality induced by a single site-specific double-strand break in a dispensable yeast plasmid. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Haber,et al.  Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. , 1990, The EMBO journal.

[43]  Ainhoa Berciano-Alcaraz,et al.  A computational approach of , 2010 .

[44]  Susan M. Gasser,et al.  Visualizing yeast chromosomes and nuclear architecture. , 2010, Methods in enzymology.

[45]  A. Ponti,et al.  Huygens Remote Manager A Web Interface for High-Volume Batch Deconvolution , 2007 .