Estimation of the mean residual life function in the presence of measurement errors

Abstract The data available for statistical analysis from many scientific areas often come with measurement error. Ignoring measurement error can bring forth biased estimates and lead to erroneous conclusions to various degrees in a data analysis. This paper considers the problem of estimation of the mean residual life function assuming that observed lifetime random variables are given by a multiplicative measurement error model. The consistency of the estimator are proven under some regularity conditions. It is also shown that the estimator weakly converges to a normal distribution. Finally, numerical examples based on an extensive simulation study and real lifetime data analysis are presented to illustrate the theory and assess performance of the estimator.

[1]  Panlop Zeephongsekul,et al.  Local Polynomial Fitting of the Mean Residual Life Function , 2013, IEEE Transactions on Reliability.

[2]  A. Meister Deconvolution Problems in Nonparametric Statistics , 2009 .

[3]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[4]  D. Hall Measurement Error in Nonlinear Models: A Modern Perspective , 2008 .

[5]  E A Frongillo,et al.  Sources of fiber and fat in diets of US women aged 19 to 50: implications for nutrition education and policy. , 1992, American journal of public health.

[6]  R. Carroll,et al.  Deconvolving kernel density estimators , 1987 .

[7]  A. Whittemore,et al.  ERRORS IN REPORTED DIETARY INTAKES , 1986 .

[8]  P. Corey,et al.  Sources of variance in 24-hour dietary recall data: implications for nutrition study design and interpretation. , 1979, The American journal of clinical nutrition.

[9]  W. J. Hall,et al.  Estimation of Mean Residual Life , 2017, Statistical Modeling for Biological Systems.

[10]  S. Resnick A Probability Path , 1999 .

[11]  Raymond J. Carroll,et al.  Measurement error in nonlinear models: a modern perspective , 2006 .

[12]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[13]  Life expectancy under random censorship , 1977 .

[15]  Peter Hall,et al.  Estimation of distributions, moments and quantiles in deconvolution problems , 2008, 0810.4821.

[16]  Jianqing Fan,et al.  Deconvolution with supersmooth distributions , 1992 .

[17]  Christian H. Hesse,et al.  Data-driven deconvolution , 1999 .

[18]  Alexandre Berred,et al.  Mean residual life estimation , 2005 .

[19]  Adriana Hornikova,et al.  Stochastic Ageing and Dependence for Reliability , 2007, Technometrics.

[20]  A. Whittemore,et al.  Errors in reported dietary intakes. II. Long-term recall. , 1988, American journal of epidemiology.

[21]  On the Nonparametric Mean Residual Life Estimator in Length-biased Sampling , 2015 .

[22]  Irène Gijbels,et al.  Practical bandwidth selection in deconvolution kernel density estimation , 2004, Comput. Stat. Data Anal..

[23]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[24]  Grace L. Yang ESTIMATION OF A BIOMETRIC FUNCTION , 1978 .

[25]  Irène Gijbels,et al.  Bootstrap bandwidth selection in kernel density estimation from a contaminated sample , 2004 .

[26]  Y. Chaubey,et al.  Smooth estimation of mean residual life under random censoring , 2008, 0805.2231.

[27]  A. Whittemore,et al.  Errors in reported dietary intakes. I. Short-term recall. , 1986, American journal of epidemiology.

[28]  Pranab Kumar Sen,et al.  On smooth estimation of mean residual life , 1999 .

[29]  R. Hoover,et al.  Dietary fat and breast cancer in the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. , 1987, Journal of the National Cancer Institute.

[30]  John P. Buonaccorsi,et al.  Measurement Error: Models, Methods, and Applications , 2010 .