Investigation on the typing of equality in type systems. (Etude sur le typage de l'égalité dans les systèmes de types)
暂无分享,去创建一个
[1] Brian Huffman,et al. A New Foundation for Nominal Isabelle , 2010, ITP.
[2] Hugo Herbelin,et al. A Lambda-Calculus Structure Isomorphic to Gentzen-Style Sequent Calculus Structure , 1994, CSL.
[3] Dale Miller,et al. A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..
[4] James McKinna,et al. Some Lambda Calculus and Type Theory Formalized , 1997, Journal of Automated Reasoning.
[5] Masako Takahashi. Parallel Reductions in lambda-Calculus , 1995, Inf. Comput..
[6] Andreas Abel. Towards Normalization by Evaluation for the betaeta-Calculus of Constructions , 2010, FLOPS.
[7] Benjamin Werner,et al. A Generic Normalisation Proof for Pure Type Systems , 1996, TYPES.
[8] Bruno Barras,et al. Sets in Coq, Coq in Sets , 2010, J. Formaliz. Reason..
[9] James McKinna,et al. Pure Type Systems Formalized , 1993, TLCA.
[10] Christian Urban. Nominal Techniques in Isabelle/HOL , 2008, Journal of Automated Reasoning.
[11] Hugo Herbelin,et al. The Coq proof assistant : reference manual, version 6.1 , 1997 .
[12] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[13] Fangmin Song. The expansion postponement in Pure Type Systems , 2008, Journal of Computer Science and Technology.
[14] Francisco Gutiérrez,et al. A Cut-Free Sequent Calculus for Pure Type Systems Verifying the Structural Rules of Gentzen/Kleene , 2002, LOPSTR.
[15] Christine Paulin-Mohring,et al. The coq proof assistant reference manual , 2000 .
[16] Arthur Charguéraud,et al. Engineering formal metatheory , 2008, POPL '08.
[17] Frank Pfenning,et al. A Linear Spine Calculus , 2003, J. Log. Comput..
[18] de Ng Dick Bruijn,et al. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .
[19] Erik Poll. Expansion Postponement for Normalising Pure Type Systems , 1998, J. Funct. Program..
[20] Benjamin WernerINRIA-Rocquencourt. Coq in Coq , 1997 .
[21] Thierry Coquand,et al. Normalization by Evaluation for Martin-Lof Type Theory with Typed Equality Judgements , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).
[22] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[23] Tobias Nipkow,et al. The Isabelle Framework , 2008, TPHOLs.
[24] Cristina Cornes,et al. Conception d'un langage de haut niveau de representation de preuves : recurrence par filtrage de motifs unification en presence de types inductifs primitifs synthese de lemmes d'inversion , 1997 .
[25] Warren D. Goldfarb,et al. The Undecidability of the Second-Order Unification Problem , 1981, Theor. Comput. Sci..
[26] Herman Geuvers,et al. On the Church-Rosser property for expressive type systems and its consequences for their metatheoretic study , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.
[27] G. B. M.. Principia Mathematica , 1911, Nature.
[28] Hugo Herbelin,et al. Equality Is Typable in Semi-full Pure Type Systems , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.
[29] Benjamin Werner,et al. Une Théorie des Constructions Inductives , 1994 .
[30] Thorsten Altenkirch,et al. Constructions, inductive types and strong normalization , 1993, CST.
[31] L. S. van Benthem Jutting. Typing in Pure Type Systems , 1993, Inf. Comput..
[32] James McKinna,et al. Checking Algorithms for Pure Type Systems , 1994, TYPES.
[33] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[34] Zhaohui Luo,et al. ECC, an extended calculus of constructions , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[35] Francisco Gutiérrez,et al. Cut Elimination in a Class of Sequent Calculi for Pure Type Systems , 2003, Electron. Notes Theor. Comput. Sci..
[36] Thomas Streicher,et al. Semantics of type theory - correctness, completeness and independence results , 1991, Progress in theoretical computer science.
[37] Martín Abadi,et al. Explicit substitutions , 1989, POPL '90.
[38] R. Pollack. The Theory of LEGO A Proof Checker for the Extended Calculus of Constructions , 1994 .
[39] Hugo Herbelin,et al. The duality of computation , 2000, ICFP '00.
[40] Frank Pfenning,et al. Unification and anti-unification in the calculus of constructions , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[41] Gérard P. Huet. Unification in Typed Lambda Calculus , 1975, Lambda-Calculus and Computer Science Theory.
[42] J. H. Geuvers. Logics and type systems , 1993 .
[43] Robin Adams. Pure type systems with judgemental equality , 2006, J. Funct. Program..
[44] M. Schönfinkel. Über die Bausteine der mathematischen Logik , 1924 .
[45] J. Y. Girard,et al. Interpretation fonctionelle et elimination des coupures dans l'aritmetique d'ordre superieur , 1972 .
[46] Stéphane Lengrand,et al. Normalisation & Equivalence in Proof Theory & Type Theory , 2006 .
[47] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .