Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading

This paper describes an evaluation framework that allows a standardized and objective quantitative comparison of carotid artery lumen segmentation and stenosis grading algorithms. We describe the data repository comprising 56 multi-center, multi-vendor CTA datasets, their acquisition, the creation of the reference standard and the evaluation measures. This framework has been introduced at the MICCAI 2009 workshop 3D Segmentation in the Clinic: A Grand Challenge III, and we compare the results of eight teams that participated. These results show that automated segmentation of the vessel lumen is possible with a precision that is comparable to manual annotation. The framework is open for new submissions through the website http://cls2009.bigr.nl.

[1]  Philippe Maeder,et al.  Three-Dimensional Computed Tomography Angiography and Magnetic Resonance Angiography of Carotid Bifurcation Stenosis , 2001, European Neurology.

[2]  Mohamed Cheriet,et al.  Robust NL-Means Filter With Optimal Pixel-Wise Smoothing Parameter for Statistical Image Denoising , 2009, IEEE Transactions on Signal Processing.

[3]  Antonio Gaddi,et al.  Atherosclerosis and Cardiovascular Disease , 1990, Springer Netherlands.

[4]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Gerald Q. Maguire,et al.  Comparison and evaluation of retrospective intermodality brain image registration techniques. , 1997, Journal of computer assisted tomography.

[6]  Andrew Samuels,et al.  Comparison and evaluation , 1986 .

[7]  Marcela Hernández Hoyos,et al.  Models, algorithms and applications in vascular image segmentation , 2008 .

[8]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[9]  I. Magnin,et al.  Fast-marching contours for the segmentation of vessel lumen in CTA cross-sections , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  Maria A. Zuluaga,et al.  Adaptation of the MARACAS Algorithm for Carotid Artery Segmentation and Stenosis Quantification on CT Images , 2010 .

[11]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[12]  P. Nederkoorn,et al.  Systematic Review of Computed Tomographic Angiography for Assessment of Carotid Artery Disease , 2004, Stroke.

[13]  H. Levine Medical Imaging , 2010, Annals of Biomedical Engineering.

[14]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[15]  Isabelle E. Magnin,et al.  Segmentation and Quantification of Blood Vessels in 3D Images using a Right Generalized Cylinder State Model , 2006, 2006 International Conference on Image Processing.

[16]  Maciej Orkisz,et al.  Deterministic and stochastic state model of right generalized cylinder (RGC-sm): application in computer phantoms synthesis , 2003, Graph. Model..

[17]  Martin Styner,et al.  Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets , 2009, IEEE Transactions on Medical Imaging.

[18]  C. Zarins,et al.  Compensatory enlargement of human atherosclerotic coronary arteries. , 1987, The New England journal of medicine.

[19]  Olivier Cuisenaire,et al.  Fully automated segmentation of carotid and vertebral arteries from contrast enhanced CTA , 2008, SPIE Medical Imaging.

[20]  J. Slattery,et al.  Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST) , 1998, The Lancet.

[21]  M. Eliasziw,et al.  Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis , 2003, The Lancet.

[22]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[23]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[24]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[25]  David Saloner,et al.  Semi-automated computer assessment of the degree of carotid artery stenosis compares favorably to visual evaluation , 2008, Journal of the Neurological Sciences.

[26]  Francis K. H. Quek,et al.  A review of vessel extraction techniques and algorithms , 2004, CSUR.

[27]  David A. Steinman,et al.  Robust and objective decomposition and mapping of bifurcating vessels , 2004, IEEE Transactions on Medical Imaging.

[28]  A. Buchan,et al.  *North American Symptomatic Carotid Endarterectomy Trial (NASCET) Steering Committee. Beneficial Effect of Carotid Endarterectomy in Symptomatic Patients with High-Grade Carotid Stenosis. , 1991 .

[29]  Joachim Hornegger,et al.  Semi-automatic level-set based segmentation and stenosis quantification of the internal carotid artery in 3D CTA data sets , 2007, Medical Image Anal..

[30]  Hüseyin Tek,et al.  Segmentation of carotid arteries by graph-cuts using centerline models , 2009, Medical Imaging.

[31]  J R Waugh,et al.  Arteriographic complications in the DSA era. , 1992, Radiology.

[32]  Karl Krissian,et al.  A Minimal Cost Path and Level Set Evolution Approach for Carotid Bifurcation Segmentation , 2009, The MIDAS Journal.

[33]  G. Hankey,et al.  Cerebral angiographic risk in mild cerebrovascular disease. , 1990, Stroke.

[34]  A Guillard [Carotid stenosis]. , 1972, Acquisitions medicales recentes.

[35]  Ilaria Gori,et al.  Comparing and combining algorithms for computer-aided detection of pulmonary nodules in computed tomography scans: The ANODE09 study , 2010, Medical Image Anal..

[36]  Laurent D. Cohen,et al.  Carotid Lumen Segmentation Based on Tubular Anisotropy and Contours Without Edges , 2009, The MIDAS Journal.

[37]  Wilbur C.K. Wong,et al.  Principal Curves: a Technique for Preliminary Carotid Lumen Segmentation and Stenosis Grading , 2009, The MIDAS Journal.

[38]  Isabelle Bloch,et al.  A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes , 2009, Medical Image Anal..

[39]  J. Frostegård,et al.  SLE, atherosclerosis and cardiovascular disease , 2005, Journal of internal medicine.

[40]  Maciej Orkisz,et al.  Carotid arteries segmentation in CT images with use of a right generalized cylinder model , 2010, Rev. Colomb. de Computación.

[41]  R. Vanninen,et al.  Carotid stenosis assessment with CT angiography using Advanced Vessel Analysis software , 2005 .

[42]  Leo Joskowicz,et al.  Nearly automatic vessels segmentation using graph-based energy minimization , 2009, The MIDAS Journal.

[43]  Josien P. W. Pluim,et al.  Medical Imaging 2008: Image Processing , 2008 .

[44]  Adam Krzyzak,et al.  Learning and Design of Principal Curves , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  OrkiszMaciej,et al.  Models, algorithms and applications in vascular image segmentation , 2008 .

[46]  E. Catmull,et al.  A CLASS OF LOCAL INTERPOLATING SPLINES , 1974 .

[47]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[48]  Martin Styner,et al.  Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms , 2009, Medical Image Anal..

[49]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[50]  Qin Li,et al.  Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs , 2010, IEEE Transactions on Medical Imaging.

[51]  Leo Joskowicz,et al.  Carotid Lumen Segmentation and Stenosis Grading Challenge , 2010, The MIDAS Journal.

[52]  D. Sackett,et al.  Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. , 1991, The New England journal of medicine.

[53]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[54]  Olivier Cuisenaire Fully automated segmentation of carotid and vertebral arteries from CTA , 2009 .

[55]  Max A. Viergever,et al.  Vessel Axis Tracking Using Topology Constrained Surface Evolution , 2007, IEEE Transactions on Medical Imaging.

[56]  J. Slattery,et al.  Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST) , 1998, The Lancet.