An efficient and robust scheme for the implementation of eigenstructure-based coherency algorithms

[1]  Kurt J. Marfurt,et al.  Seismic Attributes for Prospect Identification and Reservoir Characterization , 2007 .

[2]  Wenkai Lu,et al.  Higher-order-statistics and supertrace-based coherence-estimation algorithm , 2005 .

[3]  Improved eigenvalue-based coherence algorithm with dip scanning , 2017 .

[4]  Xinming Wu Directional structure-tensor-based coherence to detect seismic faults and channels , 2017 .

[5]  Fangyu Li,et al.  Multiazimuth coherenceMultiazimuth coherence , 2017 .

[6]  Dave Hale,et al.  Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images , 2013 .

[7]  Dave Hale,et al.  Image-guided Blended Neighbor Interpolation of Scattered Data , 2009 .

[8]  Lucas J. van Vliet,et al.  Edge preserving orientation adaptive filtering , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[9]  Gijs C. Fehmers,et al.  Fast structural interpretation with structure-oriented filtering , 2002 .

[10]  G. Fehmers,et al.  Fast structural interpretation with structure-oriented filteringStructure-Oriented Filtering , 2003 .

[11]  Thomas J. Browaeys Complex-valued Correlation And Seismic Attributes , 2009 .

[12]  Arthur E. Barnes,et al.  Weighted average seismic attributes , 2000 .

[13]  Kurt J. Marfurt,et al.  Robust estimates of 3D reflector dip and azimuth , 2006 .

[14]  Kurt J. Marfurt,et al.  Coherence attribute applications on seismic data in various guises — Part 1 , 2017, Interpretation.

[15]  Dave Hale,et al.  3D seismic image processing for faults , 2015 .

[16]  Fabio Rocca,et al.  3-D Modeling Project: 3rd report , 1995 .

[17]  Sanyi Yuan,et al.  Three-dimensional geosteering coherence attributes for deep-formation discontinuity detection , 2018, GEOPHYSICS.

[18]  Fangyu Li,et al.  Coherence attribute at different spectral scales , 2014 .

[19]  Kurt J. Marfurt,et al.  Coherency calculations in the presence of structural dip , 1999 .

[20]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[21]  Michael S. Bahorich,et al.  3-D seismic discontinuity for faults and stratigraphic features; the coherence cube , 1995 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Arthur E. Barnes,et al.  Theory of 2-D complex seismic trace analysis , 1996 .

[24]  M. Taner,et al.  Complex seismic trace analysis , 1979 .

[25]  Fangyu Li,et al.  Multi-spectral Coherence , 2017 .

[26]  X. Zhao,et al.  A More Efficient and Robust Scheme for the Implementation of Eigenstructure-Based Coherence Computation , 2019 .

[27]  Yazeed Alaudah,et al.  A Generalized Tensor-based Coherence Attribute , 2016 .

[28]  W. G. Higgs,et al.  Edge detection and stratigraphic analysis using 3D seismic data , 1996 .

[29]  Kurt J. Marfurt,et al.  Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping , 1999 .

[30]  R. Lynn Kirlin,et al.  3-D seismic attributes using a semblance‐based coherency algorithm , 1998 .

[31]  Sanyi Yuan,et al.  Geosteering Phase Attributes: A New Detector for the Discontinuities of Seismic Images , 2019, IEEE Geoscience and Remote Sensing Letters.

[32]  Sanyi Yuan,et al.  Directional complex-valued coherence attributes for discontinuous edge detection , 2016 .

[33]  Jinghuai Gao,et al.  An efficient implementation of eigenstructure-based coherence algorithm using recursion strategies and the power method , 2012 .