Hundreds of variants clustered in genomic loci and biological pathways affect human height

Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

Ayellet V. Segrè | Cameron D. Palmer | P. Elliott | M. Jarvelin | L. Coin | M. Peters | L. Liang | C. Gieger | P. Visscher | A. Hofman | A. Uitterlinden | D. Absher | T. Assimes | T. Spector | J. V. van Meurs | K. Hao | R. Mägi | M. McCarthy | P. Deloukas | A. Morris | D. Strachan | F. Hu | G. Abecasis | T. Lehtimäki | D. Gudbjartsson | L. Kiemeney | N. Freimer | U. Thorsteinsdóttir | L. Peltonen | K. Stefánsson | J. Beckmann | E. Boerwinkle | J. Rioux | V. Salomaa | M. Perola | Jianxin Shi | C. Lindgren | M. Ridderstråle | J. Hirschhorn | L. Groop | D. Schlessinger | J. O’Connell | F. Collins | Z. Kutalik | S. Bergmann | M. Boehnke | I. König | A. Ziegler | P. Ridker | D. Chasman | W. Ouwehand | N. Samani | W. McArdle | A. Balmforth | A. Hall | M. Mangino | J. Thompson | G. Lathrop | A. Dominiczak | P. Munroe | M. Caulfield | M. Farrall | T. Frayling | J. Perry | M. Weedon | A. Hattersley | N. W. Rayner | T. Ferreira | V. Gudnason | E. Schadt | J. Viikari | P. Hall | K. Ardlie | A. Rissanen | H. Grönberg | R. Hayes | R. Bergman | H. Völzke | J. Knowles | I. Borecki | S. Purcell | Albert Vernon Smith | M. Nieminen | C. Schmidt | S. Chanock | M. Goddard | D. Hunter | N. Chatterjee | N. Martin | O. Raitakari | S. Raychaudhuri | F. Rivadeneira | C. Fox | G. Thorleifsson | V. Steinthorsdottir | J. Hui | J. Beilby | L. Palmer | J. Kaprio | J. Erdmann | C. Hengstenberg | T. Meitinger | H. Wichmann | H. Schunkert | A. Mulas | M. Uda | D. Siscovick | P. Kraft | S. Wild | S. Schreiber | U. Sovio | B. Penninx | G. Willemsen | H. Huikuri | M. Province | J. Peden | S. Ripatti | A. Metspalu | T. Esko | Constance Chen | G. Montgomery | Mari-Liis Tammesoo | Helene Alavere | Jianfeng Xu | E. Ingelsson | Michael H. Preuss | K. Jacobs | K. Mohlke | C. Willer | H. Stringham | A. Jackson | J. Tuomilehto | B. Voight | S. Kathiresan | P. Almgren | G. Lettre | O. Melander | E. Speliotes | J. Rotter | F. Wiklund | T. Illig | I. Heid | A. Havulinna | T. Harris | I. Rudan | D. Boomsma | M. Stumvoll | C. Palmer | D. Levinson | K. Aben | D. Nyholt | S. Berndt | N. Wareham | Jianjun Liu | I. Surakka | J. Kettunen | J. Hottenga | A. Hamsten | C. V. van Duijn | J. Eriksson | A. Jula | I. Prokopenko | G. Walters | T. Pastinen | V. Mooser | G. van Ommen | L. Cupples | A. Heath | N. Soranzo | C. Rivolta | C. O’Donnell | A. Petersmann | J. Tyrer | K. Pietiläinen | K. North | A. Wright | K. Estrada | R. Elosua | H. Watkins | Ju-Hyun Park | A. Dixon | B. Oostra | S. Koskinen | I. Barroso | S. Rafelt | N. Robertson | J. Sambrook | T. Johnson | Jian Yang | E. Albrecht | N. Amin | C. Hayward | I. Kolčić | O. Polašek | V. Vitart | H. Campbell | G. Eiriksdottir | M. Kähönen | L. Launer | E. Widén | James F. Wilson | T. Aspelund | M. Feitosa | T. Winkler | J. Luan | T. Kilpeläinen | C. Ohlsson | S. Sanna | A. Maschio | A. Shuldiner | N. Glazer | Y. Aulchenko | R. Loos | S. Vedantam | R. Lawrence | A. Wood | L. Qi | Å. Johansson | A. Hartikainen | A. Hicks | A. Pouta | J. Zhao | U. Gyllensten | C. Iribarren | P. Pramstaller | T. Quertermous | D. Verlaan | T. Kwan | M. Kayser | G. Boucher | T. Haritunians | T. Bhangale | M. den Heijer | G. Paré | A. Parker | E. Grundberg | T. Kocher | E. J. Geus | H. Lango Allen | R. Weyant | E. Wheeler | N. Heard-Costa | J. Randall | K. S. Lo | T. Workalemahu | M. Zillikens | S. Ketkar | F. Ernst | K. Monda | Niina Pellikka | E. Altmaier | M. Cooper | Q. Gibson | M. Junttila | L. Kaplan | M. Lorentzon | B. McKnight | Martina Müller | J. Ngwa | R. Salem | E. Salvi | M. Turchin | L. Vandenput | Charles White | L. Citterio | A. De Grandi | J. Duan | N. Glorioso | Shen Haiqing | W. Igl | E. Kajantie | M. Koiranen | P. Kovacs | J. Laitinen | M. Lokki | A. Marušić | I. Pichler | A. Sanders | J. Sinisalo | J. Smit | L. Zagato | L. Zgaga | P. Zitting | M. Nelis | D. Cusi | P. Gejman | T. Mosley | A. Musk | A. Tönjes | A. Arnold | L. Atwood | Wolfgang Hoffman | D. Waterworth | R. Kaplan | Elizabeth K. Speliotes | A. Segrè | A. Smith | S. Schreiber | R. Elosúa | Cameron Palmer | M. Preuss | A. Smith | Shamika Ketkar | A. Wright | M. Kähönen | J. Eriksson | N. Martin | A. Uitterlinden | Charles White | A. Wright | J. Eriksson | A. Hofman | B. Oostra | C. V. van Duijn | J. Perry | D. Boomsma | A. Morris | P. Hall | R. Loos | Hana Lango Allen | M. McCarthy | A. Wright | A. Wright | Charles White | N. Martin | N. Martin | E. D. Geus | N. Martin | D. Hunter | F. Hu | A. Jackson | M. McCarthy | A. Wright | A. Morris

[1]  F. Galton Regression Towards Mediocrity in Hereditary Stature. , 1886 .

[2]  R. Fisher XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. , 1919, Transactions of the Royal Society of Edinburgh.

[3]  B. Lamberg THE SIGNE AND ANE GYLLENBERG FOUNDATION , 1988, Acta dermato-venereologica. Supplementum.

[4]  C. Deng,et al.  FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. , 1998, Development.

[5]  King Khama, Emperor Joe and the Great White Queen: Victorian Britain through African Eyes , 1999 .

[6]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[7]  Xin Xu,et al.  Implementing a unified approach to family‐based tests of association , 2000, Genetic epidemiology.

[8]  D. Reich,et al.  Detecting association in a case‐control study while correcting for population stratification , 2001, Genetic epidemiology.

[9]  B. Little,et al.  Growth hormone insensitivity associated with a STAT5b mutation. , 2003, The New England journal of medicine.

[10]  D. Arking,et al.  Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. , 2003, Nature genetics.

[11]  D. Arking,et al.  Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome , 2003, Nature Genetics.

[12]  Elizabeth L. Ogburn,et al.  Demonstrating stratification in a European American population , 2005, Nature Genetics.

[13]  Manuel A. R. Ferreira,et al.  Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings , 2006, PLoS genetics.

[14]  A. Superti-Furga,et al.  Nosology and classification of genetic skeletal disorders: 2006 revision , 2007, American journal of medical genetics. Part A.

[15]  Richa Saxena,et al.  A common variant of HMGA2 is associated with adult and childhood height in the general population , 2007, Nature Genetics.

[16]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[17]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[18]  C. Gieger,et al.  Identification of ten loci associated with height highlights new biological pathways in human growth , 2008, Nature Genetics.

[19]  David M. Evans,et al.  Genome-wide association analysis identifies 20 loci that influence adult height , 2008, Nature Genetics.

[20]  Bjarni V. Halldórsson,et al.  Many sequence variants affecting diversity of adult human height , 2008, Nature Genetics.

[21]  Shah Ebrahim,et al.  Common variants in the GDF5-UQCC region are associated with variation in human height , 2008, Nature Genetics.

[22]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[23]  Yurii S. Aulchenko,et al.  A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation , 2009, Human molecular genetics.

[24]  D. Goldstein Common genetic variation and human traits. , 2009, The New England journal of medicine.

[25]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[26]  M. Daly,et al.  Identifying Relationships among Genomic Disease Regions: Predicting Genes at Pathogenic SNP Associations and Rare Deletions , 2009, PLoS genetics.

[27]  Inês Barroso,et al.  Meta-Analysis of Genome-Wide Scans for Human Adult Stature Identifies Novel Loci and Associations with Measures of Skeletal Frame Size , 2009, PLoS genetics.

[28]  A. Hofman,et al.  Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. , 2009, Human molecular genetics.

[29]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[30]  Nilanjan Chatterjee,et al.  Estimation of effect size distribution from genome-wide association studies and implications for future discoveries , 2010, Nature Genetics.

[31]  David B. Goldstein,et al.  Rare Variants Create Synthetic Genome-Wide Associations , 2010, PLoS biology.

[32]  Ayellet V. Segrè,et al.  Common Inherited Variation in Mitochondrial Genes Is Not Enriched for Associations with Type 2 Diabetes or Related Glycemic Traits , 2010, PLoS genetics.

[33]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[34]  Francesca Forzano,et al.  Individual conditions grouped according to the international nosology and classification of genetic skeletal disorders , 2012 .

[35]  L. Penrose,et al.  THE CORRELATION BETWEEN RELATIVES ON THE SUPPOSITION OF MENDELIAN INHERITANCE , 2022 .