Least squares superposition codes of moderate dictionary size, reliable at rates up to capacity

Sparse superposition codes are developed for the additive white Gaussian noise channel with average codeword power constraint. Codewords are linear combinations of subsets of vectors, with the possible messages indexed by the choice of subset. Decoding is by least squares, tailored to the assumed form of linear combination. Communication is shown to be reliable with error probability exponentially small for all rates up to the Shannon capacity.

[1]  Sundeep Rangan,et al.  On-Off Random Access Channels: A Compressed Sensing Framework , 2009, ArXiv.

[2]  Emmanuel Abbe,et al.  Polar coding schemes for the AWGN channel , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[3]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[4]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[5]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[6]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[7]  Michael Elad,et al.  Stable recovery of sparse overcomplete representations in the presence of noise , 2006, IEEE Transactions on Information Theory.

[8]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[9]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[10]  Sundeep Rangan,et al.  Necessary and Sufficient Conditions for Sparsity Pattern Recovery , 2008, IEEE Transactions on Information Theory.

[11]  Kamiar Rahnama Rad,et al.  Sparse superposition codes for Gaussian vector quantization , 2010, 2010 IEEE Information Theory Workshop on Information Theory (ITW 2010, Cairo).

[12]  Stanislaw J. Szarek,et al.  Condition numbers of random matrices , 1991, J. Complex..

[13]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[14]  David L. Donoho,et al.  Exponential Bounds Implying Construction of Compressed Sensing Matrices, Error-Correcting Codes, and Neighborly Polytopes by Random Sampling , 2010, IEEE Transactions on Information Theory.

[15]  J. Tropp Norms of Random Submatrices and Sparse Approximation , 2008 .

[16]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[17]  Daniel J. Costello,et al.  A distance spectrum interpretation of turbo codes , 1996, IEEE Trans. Inf. Theory.

[18]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[19]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[20]  A. Barron,et al.  Approximation and learning by greedy algorithms , 2008, 0803.1718.

[21]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[22]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[23]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[24]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[25]  Cong Huang Risk of penalized least squares, greedy selection andl 1-penalization for flexible function libraries , 2008 .

[26]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[27]  Joel A. Tropp,et al.  Applications of sparse approximation in communications , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[28]  E. Candès,et al.  Near-ideal model selection by ℓ1 minimization , 2008, 0801.0345.

[29]  Shu Lin,et al.  Error Control Coding , 2004 .

[30]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[31]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[32]  V. Saligrama,et al.  Information theoretic bounds to sensing capacity of sensor networks under fixed SNR , 2007, 2007 IEEE Information Theory Workshop.

[33]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[34]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[35]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[36]  Emre Telatar,et al.  On the rate of channel polarization , 2008, 2009 IEEE International Symposium on Information Theory.

[37]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[38]  Andrew R. Barron,et al.  Toward fast reliable communication at rates near capacity with Gaussian noise , 2010, 2010 IEEE International Symposium on Information Theory.

[39]  A. Sridharan Broadcast Channels , 2022 .

[40]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[41]  J. Tropp On the conditioning of random subdictionaries , 2008 .

[42]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[43]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[44]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of noise , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[45]  Robert M. Gray,et al.  Coding for noisy channels , 2011 .

[46]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[47]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[48]  A. Barron,et al.  Sparse Superposition Codes: Fast and Reliable at Rates Approaching Capacity with Gaussian Noise , 2010 .

[49]  Martin J. Wainwright,et al.  Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting , 2009, IEEE Trans. Inf. Theory.

[50]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[51]  Tong Zhang,et al.  Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations , 2011, IEEE Transactions on Information Theory.

[52]  Pedram Pad,et al.  Capacity Achieving Random Sparse Linear Codes , 2011, ArXiv.

[53]  Michael Lentmaier,et al.  Joint Permutor Analysis and Design for Multiple Turbo Codes , 2006, IEEE Transactions on Information Theory.

[54]  G. David Forney,et al.  Modulation and Coding for Linear Gaussian Channels , 1998, IEEE Trans. Inf. Theory.

[55]  Emmanuel J. Cand Near-ideal model selection by '1 minimization , 2008 .

[56]  Galen Reeves,et al.  Sampling bounds for sparse support recovery in the presence of noise , 2008, 2008 IEEE International Symposium on Information Theory.

[57]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[58]  Daniel J. Costello,et al.  Channel coding: The road to channel capacity , 2006, Proceedings of the IEEE.

[59]  Vahid Tarokh,et al.  Shannon-Theoretic Limits on Noisy Compressive Sampling , 2007, IEEE Transactions on Information Theory.

[60]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[61]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[62]  Tong Zhang,et al.  On the Consistency of Feature Selection using Greedy Least Squares Regression , 2009, J. Mach. Learn. Res..

[63]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[64]  Peter L. Bartlett,et al.  Efficient agnostic learning of neural networks with bounded fan-in , 1996, IEEE Trans. Inf. Theory.

[65]  Vahid Tarokh,et al.  Noisy compressive sampling limits in linear and sublinear regimes , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[66]  T. Blumensath,et al.  Iterative Thresholding for Sparse Approximations , 2008 .

[67]  L. Jones A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training , 1992 .

[68]  Alexander Barg,et al.  Error Exponents of Expander Codes under Linear-Complexity Decoding , 2004, SIAM J. Discret. Math..

[69]  Martin J. Wainwright,et al.  Information-Theoretic Limits on Sparsity Recovery in the High-Dimensional and Noisy Setting , 2007, IEEE Transactions on Information Theory.

[70]  Waheed U. Bajwa,et al.  Multiuser detection in asynchronous on-off random access channels using lasso , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[71]  Kannan Ramchandran,et al.  Denoising by Sparse Approximation: Error Bounds Based on Rate-Distortion Theory , 2006, EURASIP J. Adv. Signal Process..

[72]  Rüdiger L. Urbanke,et al.  A rate-splitting approach to the Gaussian multiple-access channel , 1996, IEEE Trans. Inf. Theory.

[73]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[74]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[75]  Jian Cao,et al.  Asymptotically Optimal Multiple-Access Communication Via Distributed Rate Splitting , 2006, IEEE Transactions on Information Theory.

[76]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[77]  Martin J. Wainwright,et al.  Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices , 2008, IEEE Transactions on Information Theory.

[78]  Harrison H. Zhou,et al.  False Discovery Rate Control With Groups , 2010, Journal of the American Statistical Association.

[79]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .