A Uniform Approach to Fundamental Sequences and Hierarchies
暂无分享,去创建一个
[1] Helmut Schwichtenberg. Eine Klassifikation der e0-rekursiven Funktionen , 1971 .
[2] S. S. Wainer,et al. A classification of the ordinal recursive functions , 1970 .
[3] Wilfried Buchholz,et al. An independence result for (II11-CA)+BI , 1987, Ann. Pure Appl. Log..
[4] E. A. Cichon,et al. Termination orderings and complexity characterisations , 1993 .
[5] Noriya Kadota,et al. Some extensions of built-upness on systems of fundamental sequences , 1990, Math. Log. Q..
[6] Fred Zemke,et al. P.R.-regulated systems of notation and the subrecursive hierarchy equivalence property , 1977 .
[7] Stanley S. Wainer,et al. Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy , 1972, Journal of Symbolic Logic.
[8] Stanley S. Wainer,et al. Computability — Logical and Recursive Complexity , 1991 .
[9] S. Wainer,et al. Provably computable functions and the fast growing hierarchy , 1987 .
[10] Georg Kreisel,et al. On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.
[11] S. S. Wainer,et al. Subrecursive hierarchies via direct limits , 1984 .
[12] H. E. Rose. Subrecursion: Functions and Hierarchies , 1984 .
[13] Michael Rathjen,et al. Proof-theoretic analysis of KPM , 1991, Arch. Math. Log..
[14] Rick L. Smith. The Consistency Strengths of Some Finite Forms of the Higman and Kruskal Theorems , 1985 .
[15] E. Cichon. A short proof of two recently discovered independence results using recursion theoretic methods , 1983 .
[16] Harvey M. Friedman,et al. Elementary Descent Recursion and Proof Theory , 1995, Ann. Pure Appl. Log..
[17] Diana Schmidt,et al. Built-up systems of fundamental sequences and hierarchies of number-theoretic functions , 1977, Arch. Math. Log..