Multiple change-point analysis for linear regression models

The product partition model (PPM) is a powerful tool for clustering and change point analysis mainly because it considers the number of blocks or segments as a random variable. We apply the PPM to identify multiple change points in linear regression models extending some previous works. In addition, we provide a predictivistic justification for the within-block linear model. This way of modeling provides a non ad-hoc procedure for treating piecewise regression models. We also modify the original algorithm proposed by Barry and Hartigan (1993) in order to obtain samples from the product distributions –posteriors of the parameters in the regression model, say– in the contiguous-block case. Consequently, posterior summaries (including the posterior means or product estimates) can be obtained in the usual way. The product estimates are obtained considering both the proposed and Barry and Hartigan’s algorithms, which are compared to least square estimates for the piecewise regression models. To illustrate the use of the proposed methodology, we analyze some financial data sets.

[1]  D. A. Hsu,et al.  A Bayesian Robust Detection of Shift in the Risk Structure of Stock Market Returns , 1982 .

[2]  P. Iglesias,et al.  A note on extendibility and predictivistic inference in finite populations , 2009 .

[3]  Siva Sivaganesan,et al.  On Modeling Change Points in Non-Homogeneous Poisson Processes , 2005 .

[4]  H. Kyburg,et al.  Studies in Subjective Probability (2nd ed). , 1981 .

[5]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[6]  M. J. Bayarri,et al.  Objective Bayesian Analysis of Multiple Changepoints for Linear Models , 2006 .

[7]  P. Diaconis,et al.  Conjugate Priors for Exponential Families , 1979 .

[8]  D. Barry,et al.  Bayesian disease mapping using product partition models , 2008, Statistics in medicine.

[9]  F. Demarqui,et al.  Estimating the grid of time-points for the piecewise exponential model , 2008, Lifetime data analysis.

[10]  F. Quintana,et al.  Bayesian clustering and product partition models , 2003 .

[11]  L. Milan,et al.  Bayesian inference of a linear segmented regression model , 2003 .

[12]  P. Dellaportas,et al.  Bayesian clustering for row effects models , 2008 .

[13]  P. Müller,et al.  Random Partition Models with Regression on Covariates. , 2010, Journal of statistical planning and inference.

[14]  A. F. Smith A Bayesian approach to inference about a change-point in a sequence of random variables , 1975 .

[15]  Reinaldo B. Arellano-Valle,et al.  Predictivistic characterizations of multivariate student- t models , 2003 .

[16]  P. Iglesias,et al.  Characterizations of multivariate spherical distributions inl∞-norm , 1998 .

[17]  Yi-Ching Yao Estimation of a Noisy Discrete-Time Step Function: Bayes and Empirical Bayes Approaches , 1984 .

[18]  J. Hartigan,et al.  A Bayesian Analysis for Change Point Problems , 1993 .

[19]  P. Fearnhead,et al.  Efficient Online Inference for Multiple Changepoint Problems , 2006, 2006 IEEE Nonlinear Statistical Signal Processing Workshop.

[20]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[21]  Pilar Loreto Iglesias,et al.  Bayesian Identification of Outliers and Change-Points in Measurement Error Models , 2005, Adv. Complex Syst..

[22]  Pilar Loreto Iglesias,et al.  Full predictivistic modeling of stock market data: Application to change point problems , 2007, Eur. J. Oper. Res..

[23]  G. Casella,et al.  Clustering using objective functions and stochastic search , 2008 .

[24]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[25]  E. M. Crowley Product Partition Models for Normal Means , 1997 .

[26]  S. Wechsler Exchangeability and predictivism , 1993 .

[27]  F. Quintana A predictive view of Bayesian clustering , 2006 .

[28]  Steffen L. Lauritzen,et al.  Finite de Finetti theorems in linear models and multivariate analysis , 1992 .

[29]  P. L. Iglesias,et al.  A predictivistic interpretation of the multivariatet distribution , 1994 .

[30]  Rosangela Helena Loschi,et al.  Extension to the product partition model: computing the probability of a change , 2005, Comput. Stat. Data Anal..

[31]  U. Menzefricke A Bayesian Analysis of a Change in the Precision of a Sequence of Independent Normal Random Variables at an Unknown Time Point , 1981 .

[32]  Paul Fearnhead,et al.  Exact and efficient Bayesian inference for multiple changepoint problems , 2006, Stat. Comput..

[33]  Claudia Tarantola,et al.  Bayesian Value-at-Risk with product partition models , 2012 .

[34]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[35]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[36]  A. Gelfand,et al.  Spatio-temporal change-point modeling , 2005 .

[37]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .