Efficient Parallel Algorithms for Optical Computing with the DFT Primitive

The optical computing technology offers new challenges to the algorithm designers since it can perform an n-point DFT computation in only unit time. Note that DFT is a non-trivial computation in the PRAM model. We develop two new models, DFT-VLSIO and DFT-Circuit, to capture this characteristic of optical computing. We also provide two paradigms for developing parallel algorithms in these models. Efficient parallel algorithms for many problems including polynomial and matrix computations, sorting and string matching are presented. The sorting and string matching algorithms are particularly noteworthy. Almost all of these algorithms are within a polylog factor of the optical computing (VLSIO) lower bounds derived in [BR87] and [TR90].

[1]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[2]  C. Thomborson,et al.  A Complexity Theory for VLSI , 1980 .

[3]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[4]  C. Burrus,et al.  Fast one-dimensional digital convolution by multidimensional techniques , 1974 .

[5]  Victor Y. Pan,et al.  Some polynomial and Toeplitz matrix computations , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[6]  John H. Reif,et al.  Energy complexity of optical computations , 1990, Proceedings of the Second IEEE Symposium on Parallel and Distributed Processing 1990.

[7]  Arnold L. Rosenberg,et al.  Three-Dimensional Circuit Layouts , 1984, SIAM J. Comput..

[8]  Steven Fortune,et al.  Parallelism in random access machines , 1978, STOC.

[9]  Dror G. Feitelson Optical computing - a survey for computer scientists , 1988 .

[10]  János Komlós,et al.  An 0(n log n) sorting network , 1983, STOC.

[11]  J. Reif,et al.  On Threshold Circuits and Polynomial Computation , 1992, SIAM J. Comput..

[12]  H. T. Kung Let's Design Algorithms for VLSI Systems , 1979 .

[13]  R Barakat,et al.  Lower bounds on the computational efficiency of optical computing systems. , 1987, Applied optics.

[14]  Georg Schnitger,et al.  Parallel Computation with Threshold Functions , 1988, J. Comput. Syst. Sci..

[15]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[16]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[17]  E. Szemerédi,et al.  O(n LOG n) SORTING NETWORK. , 1983 .

[18]  Joseph L. Horner Optical Signal Processing , 1987 .

[19]  Jean Vuillemin,et al.  A Combinatorial Limit to the Computing Power of VLSI Circuits , 1983, IEEE Transactions on Computers.

[20]  V P Heuring,et al.  Bit-serial architecture for optical computing. , 1992, Applied optics.

[21]  John H. Reif,et al.  Holographic Routing Network For Parallel Processing Machines , 1989, Other Conferences.

[22]  Joseph W. Goodman,et al.  Architectural development of optical data processing systems , 1982 .

[23]  C. Thomborson,et al.  Area-time complexity for VLSI , 1979, STOC.

[24]  Thomas Kailath,et al.  Recent Results in Least-Squares Estimation Theory , 1977 .

[25]  Victor Y. Pan,et al.  Efficient parallel solution of linear systems , 1985, STOC '85.

[26]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[27]  Walter J. Savitch,et al.  Time Bounded Random Access Machines with Parallel Processing , 1979, JACM.

[28]  Leslie G. Valiant,et al.  A logarithmic time sort for linear size networks , 1982, STOC.

[29]  Uzi Vishkin,et al.  Highly parallelizable problems , 1989, STOC '89.