Improving the computational efficiency and accuracy of the semi-discretization method for periodic delay-differential equations

When analyzing the computational efficiency of the semi-discretization method for periodic delay-differential equations, the computation of the transition matrix of the approximated system is identified to cause most of the computational cost. Different measures to increase computational efficiency of the semi-discretization method are proposed. For systems with piecewise defined delay terms as they occur, e.g., in interrupted cutting processes, a predefined non-equidistant discretization scheme is introduced which significantly reduces computational cost and, at the same time, increases accuracy of the method. The proposed measures are demonstrated by means of a 2-dof milling process.

[1]  Nejat Olgac,et al.  Active Vibration Suppression With Time Delayed Feedback , 2003 .

[2]  Yusuf Altintas,et al.  Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation , 1998 .

[3]  B. Mann,et al.  Stability of Interrupted Cutting by Temporal Finite Element Analysis , 2003 .

[4]  Hooshang Hemami,et al.  Controller design for natural and robotic systems with transmission delays , 2002, J. Field Robotics.

[5]  Jon R. Pratt,et al.  The Stability of Low Radial Immersion Milling , 2000 .

[6]  O. Daněk,et al.  Selbsterregte Schwingungen : An Werkzeugmaschinen , 1962 .

[7]  B. Cahlon,et al.  Asymptotic stability of a mechanical robotics model with damping and delay , 2005 .

[8]  Robert I. King,et al.  Handbook of High-Speed Machining Technology , 1986 .

[9]  Manfred Weck,et al.  Dynamisches Verhalten spanender Werkzeugmaschinen : Einflußgrößen, Beurteilungsverfahren, Meßtechnik. Mit 141 Abbildungen. , 1977 .

[10]  Gábor Stépán,et al.  Updated semi‐discretization method for periodic delay‐differential equations with discrete delay , 2004 .

[11]  Martin Hosek,et al.  Active Vibration Absorption Using Delayed Resonator With Relative Position Measurement , 1997 .

[12]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .

[13]  J. Douglas Birdwell,et al.  Modeling and Closed Loop Control for Resource-Constrained Load Balancing with Time Delays in Parallel Computations , 2007 .

[14]  Gábor Stépán,et al.  Stability of up-milling and down-milling, part 1: alternative analytical methods , 2003 .

[15]  Gábor Stépán,et al.  Semi‐discretization method for delayed systems , 2002 .

[16]  Hooshang Hemami,et al.  Modeling and control of biological systems with multiple afferent and efferent transmission delays , 2000, J. Field Robotics.

[17]  Philippe Le Parc,et al.  Web remote control of mechanical systems : Delay problems and experimental measurements of round trip time , 2007 .

[18]  R. Bhattacharyya,et al.  DYNAMICS OF A DELAYED EPIDEMIOLOGICAL MODEL WITH NONLINEAR INCIDENCE: THE ROLE OF INFECTED INCIDENCE FRACTION , 2005 .

[19]  Yusuf Altintas,et al.  Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems , 1998 .

[20]  Peter Eberhard,et al.  A New Curve Tracking Algorithm for Efficient Computation of Stability Boundaries of Cutting Processes , 2007 .

[21]  Yusuf Altintas,et al.  Analytical Prediction of Stability Lobes in Milling , 1995 .

[22]  Ioannis Minis,et al.  Analysis of Linear and Nonlinear Chatter in Milling , 1990 .

[23]  S. A. Tobias Machine-tool vibration , 1965 .

[24]  Gábor Stépán,et al.  On stability prediction for milling , 2005 .