A generalized algorithm for nonlinear state estimation using extended UFIR filtering

The unbiased finite impulse response (UFIR) filter provides better accuracy when the noise statistics are not fully known. Based on the UFIR approach, a generalized algorithm is developed for extended UFIR (EFIR) filtering of nonlinear models in discrete time state space. As well as the UFIR filter, the EFIR filter completely ignore the noise statistics and requires an optimal averaging horizon of Nopt points. The optimal horizon can be determined via measurements with much smaller efforts and cost than for the noise statistics. These properties of EFIR filtering are distinctive advantages against the extended Kalman filter (EKF). Extensive simulations confirm that the proposed iterative EFIR filtering algorithm is more successful in accuracy and more robust than EKF under the unknown noise statistics and model uncertainties.

[1]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[2]  Kiyoshi Komoriya,et al.  Position estimation of a mobile robot using optical fiber gyroscope (OFG) , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[3]  Yuriy S. Shmaliy,et al.  Accurate Self-Localization in RFID Tag Information Grids Using FIR Filtering , 2014, IEEE Transactions on Industrial Informatics.

[4]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[5]  N. F. Toda,et al.  Divergence in the Kalman Filter , 1967 .

[6]  Harold W. Sorenson,et al.  On the development of practical nonlinear filters , 1974, Inf. Sci..

[7]  Sanowar H. Khan,et al.  Combined extended FIR/Kalman filtering for indoor robot localization via triangulation , 2014 .

[8]  F. Martinerie,et al.  Data association and tracking using hidden Markov models and dynamic programming , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Hisashi Tanizaki,et al.  Nonlinear filters , 1993 .

[10]  Yuriy S. Shmaliy,et al.  Suboptimal FIR Filtering of Nonlinear Models in Additive White Gaussian Noise , 2012, IEEE Transactions on Signal Processing.

[11]  Subhash Challa,et al.  Nonlinear filter design using Fokker-Planck-Kolmogorov probability density evolutions , 2000, IEEE Trans. Aerosp. Electron. Syst..

[12]  Yuriy S. Shmaliy,et al.  Linear Optimal FIR Estimation of Discrete Time-Invariant State-Space Models , 2010, IEEE Transactions on Signal Processing.

[13]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[14]  Bruce P. Gibbs,et al.  Advanced Kalman Filtering, Least-Squares and Modeling: A Practical Handbook , 2011 .

[15]  W. Kwon,et al.  Receding Horizon Control: Model Predictive Control for State Models , 2005 .

[16]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[17]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[18]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[19]  Stephen P. Boyd,et al.  Receding Horizon Control , 2011, IEEE Control Systems.

[20]  Yuriy S. Shmaliy,et al.  An Iterative Kalman-Like Algorithm Ignoring Noise and Initial Conditions , 2011, IEEE Transactions on Signal Processing.

[21]  Yuriy S. Shmaliy,et al.  Optimal Memory for Discrete-Time FIR Filters in State-Space , 2014, IEEE Trans. Signal Process..

[22]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[23]  Henry Cox,et al.  On the estimation of state variables and parameters for noisy dynamic systems , 1964 .

[24]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .