Decidable Properties for Regular Cellular Automata

We investigate decidable properties for regular cellular automata. In particular, we show that regularity itself is an undecidable property and that nilpotency, equicontinuity and positively expansiveness became decidable if we restrict to regular cellular automata.

[1]  François Blanchard,et al.  Dynamical Behaviour of Coven's Aperiodic Cellular Automata , 1996, Theor. Comput. Sci..

[2]  K. Culík,et al.  The topological entropy of cellular automata is uncomputable , 1992, Ergodic Theory and Dynamical Systems.

[3]  P. Kurka Languages, equicontinuity and attractors in cellular automata , 1997, Ergodic Theory and Dynamical Systems.

[4]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[5]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[6]  Petr Kurka Zero-Dimensional Dynamical Systems, Formal Languages, and Universality , 1999, Theory of Computing Systems.

[7]  Pietro Di Lena On Computing the Topological Entropy of One-sided Cellular Automata , 2007, J. Cell. Autom..

[8]  Enrico Formenti,et al.  On undecidability of equicontinuity classification for cellular automata , 2003, DMCS.

[9]  Petr Kůrka,et al.  Topological and symbolic dynamics , 2003 .

[10]  Jarkko Kari The Nilpotency Problem of One-Dimensional Cellular Automata , 1992, SIAM J. Comput..

[11]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[12]  Zhisong Jiang,et al.  Evolution Complexity of the Elementary Cellular Automaton Rule 18 , 2002, Complex Syst..

[13]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[14]  Robert H. Gilman Classes of linear automata , 1987 .

[15]  Jean-Paul Allouche,et al.  Notes on cellular automata , 2001 .

[16]  François Blanchard,et al.  Dynamical properties of expansive one-sided cellular automata , 1997 .