High order numerical methods for the space non-homogeneous Boltzmann equation

In this paper we present accurate methods for the numerical solution of the Boltzmann equation of rarefied gas. The methods are based on a time splitting technique. The transport is solved by a third order accurate (in space) positive and flux conservative (PFC) method. The collision step is treated by a Fourier approximation of the collision integral, which guarantees spectral accuracy in velocity, coupled with several high order integrators in time. Strang splitting is used to achieve second order accuracy in space and time. Several numerical tests illustrate the properties of the methods.

[1]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[2]  Kenichi Nanbu,et al.  Direct Simulation Scheme Derived from the Boltzmann Equation. IV. Correlation of Velocity , 1981 .

[3]  E. Wild On Boltzmann's equation in the kinetic theory of gases , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Alain Ghizzo,et al.  Parallelization of semi-Lagrangian Vlasov codes , 1999, Journal of Plasma Physics.

[5]  Irene M. Gamba,et al.  A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods , 2003 .

[6]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[7]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[8]  Kenichi Nanbu,et al.  Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .

[9]  Sergej Rjasanow,et al.  Numerical solution of the Boltzmann equation on the uniform grid , 2002, Computing.

[10]  E. Fijalkow,et al.  A numerical solution to the Vlasov equation , 1999 .

[11]  F. Rogier,et al.  A direct method for solving the Boltzmann equation , 1994 .

[12]  Lorenzo Pareschi,et al.  A Fourier spectral method for homogeneous boltzmann equations , 1996 .

[13]  David B. Goldstein,et al.  Investigations of the motion of discrete-velocity gases , 1988 .

[14]  T. Ohwada Higher Order Approximation Methods for the Boltzmann Equation , 1998 .

[15]  S. Takata,et al.  Inappropriateness of the heat‐conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation , 1996 .

[16]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[17]  C. Buet,et al.  A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics , 1996 .

[18]  Bradford Sturtevant,et al.  Numerical study of discrete‐velocity gases , 1990 .

[19]  S. Rjasanow,et al.  Difference scheme for the Boltzmann equation based on the Fast Fourier Transform , 1997 .

[20]  Lorenzo Pareschi,et al.  Time Relaxed Monte Carlo Methods for the Boltzmann Equation , 2001, SIAM J. Sci. Comput..

[21]  Graeme A. Bird,et al.  Molecular Gas Dynamics , 1976 .

[22]  Claude Bardos The Mathematical Theory of Dilute Gases (C. Cercignani, R. Illner, and M. Pulvierenti) , 1995, SIAM Rev..

[23]  H. Neunzert,et al.  On a simulation scheme for the Boltzmann equation , 1986 .

[24]  L. C. Pitchford,et al.  A Numerical Solution of the Boltzmann Equation , 1983 .

[25]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[26]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[27]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[28]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.