High order numerical methods for the space non-homogeneous Boltzmann equation
暂无分享,去创建一个
[1] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[2] Kenichi Nanbu,et al. Direct Simulation Scheme Derived from the Boltzmann Equation. IV. Correlation of Velocity , 1981 .
[3] E. Wild. On Boltzmann's equation in the kinetic theory of gases , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] Alain Ghizzo,et al. Parallelization of semi-Lagrangian Vlasov codes , 1999, Journal of Plasma Physics.
[5] Irene M. Gamba,et al. A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods , 2003 .
[6] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[7] R. Illner,et al. The mathematical theory of dilute gases , 1994 .
[8] Kenichi Nanbu,et al. Direct simulation scheme derived from the Boltzmann equation. I - Monocomponent gases. II - Multicom , 1980 .
[9] Sergej Rjasanow,et al. Numerical solution of the Boltzmann equation on the uniform grid , 2002, Computing.
[10] E. Fijalkow,et al. A numerical solution to the Vlasov equation , 1999 .
[11] F. Rogier,et al. A direct method for solving the Boltzmann equation , 1994 .
[12] Lorenzo Pareschi,et al. A Fourier spectral method for homogeneous boltzmann equations , 1996 .
[13] David B. Goldstein,et al. Investigations of the motion of discrete-velocity gases , 1988 .
[14] T. Ohwada. Higher Order Approximation Methods for the Boltzmann Equation , 1998 .
[15] S. Takata,et al. Inappropriateness of the heat‐conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation , 1996 .
[16] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[17] C. Buet,et al. A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics , 1996 .
[18] Bradford Sturtevant,et al. Numerical study of discrete‐velocity gases , 1990 .
[19] S. Rjasanow,et al. Difference scheme for the Boltzmann equation based on the Fast Fourier Transform , 1997 .
[20] Lorenzo Pareschi,et al. Time Relaxed Monte Carlo Methods for the Boltzmann Equation , 2001, SIAM J. Sci. Comput..
[21] Graeme A. Bird,et al. Molecular Gas Dynamics , 1976 .
[22] Claude Bardos. The Mathematical Theory of Dilute Gases (C. Cercignani, R. Illner, and M. Pulvierenti) , 1995, SIAM Rev..
[23] H. Neunzert,et al. On a simulation scheme for the Boltzmann equation , 1986 .
[24] L. C. Pitchford,et al. A Numerical Solution of the Boltzmann Equation , 1983 .
[25] Centro internazionale matematico estivo. Session,et al. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .
[26] E. Tadmor,et al. Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .
[27] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[28] L. Chambers. Linear and Nonlinear Waves , 2000, The Mathematical Gazette.