Entropy numbers of compact embeddings of smoothness Morrey spaces on bounded domains

We study the compact embedding between smoothness Morrey spaces on bounded domains and characterise its entropy numbers. Here we discover a new phenomenon when the difference of smoothness parameters in the source and target spaces is rather small compared with the influence of the fine parameters in the Morrey setting. In view of some partial forerunners this was not to be expected till now. Our argument relies on wavelet decomposition techniques of the function spaces and a careful study of the related sequence space setting.

[1]  H. Triebel Local Function Spaces, Heat and Navier-stokes Equations , 2013 .

[2]  H. Triebel Fractals and spectra , 1997 .

[3]  Jingshi Xu,et al.  Some properties of Morrey type Besov–Triebel spaces , 2005 .

[4]  D. Haroske,et al.  Entropy and Approximation Numbers of Embeddings of Function Spaces with Muckenhoupt Weights, I , 2008 .

[5]  A. Pietsch Eigenvalues and S-Numbers , 1987 .

[6]  D. Haroske,et al.  Embedding properties of Besov-type spaces , 2015 .

[7]  A. Mazzucato Besov-Morrey spaces: Function space theory and applications to non-linear PDE , 2002 .

[8]  Winfried Sickel,et al.  Entropy numbers of Sobolev embeddings of radial Besov spaces , 2003, J. Approx. Theory.

[9]  M. Rosenthal Local means, wavelet bases and wavelet isomorphisms in Besov‐Morrey and Triebel‐Lizorkin‐Morrey spaces , 2013 .

[10]  M. Fowler,et al.  Function Spaces , 2022 .

[11]  Y. Sawano WAVELET CHARACTERIZATION OF BESOV-MORREY AND TRIEBEL-LIZORKIN-MORREY SPACES , 2008 .

[12]  D. Haroske,et al.  Embeddings of Besov–Morrey spaces on bounded domains , 2013 .

[13]  W. Sickel,et al.  Entropy Numbers of Embeddings of Weighted Besov Spaces , 2005 .

[14]  D. Haroske,et al.  Some quantitative result on compact embeddings in smoothness Morrey spaces on bounded domains; an approach via interpolation , 2019, Banach Center Publications.

[15]  D. Haroske,et al.  On Sobolev and Franke–Jawerth embeddings of smoothness Morrey spaces , 2014 .

[16]  Charles B. Morrey,et al.  On the solutions of quasi-linear elliptic partial differential equations , 1938 .

[17]  Wen Yuan,et al.  Limiting embeddings in smoothness Morrey spaces, continuity envelopes and applications , 2015, J. Approx. Theory.

[18]  Thomas Kühn,et al.  A Lower Estimate for Entropy Numbers , 2001, J. Approx. Theory.

[19]  Hitoshi Tanaka,et al.  Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces , 2007 .

[20]  Y. Sawano A note on Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces , 2009 .

[21]  H. Kozono,et al.  Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data , 1994 .

[22]  H. Triebel Hybrid Function Spaces, Heat and Navier-stokes Equations , 2015 .

[23]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[24]  B. Carl,et al.  Entropy, Compactness and the Approximation of Operators , 1990 .

[25]  D. Haroske,et al.  Continuous embeddings of Besov-Morrey function spaces , 2012 .

[26]  Lena Schwartz,et al.  Theory Of Function Spaces Ii , 2016 .

[27]  H. Triebel Theory Of Function Spaces , 1983 .

[28]  W. Sickel Smoothness spaces related to Morrey spaces , 2013 .

[29]  Tino Ullrich,et al.  Entropy Numbers of Finite Dimensional Mixed-Norm Balls and Function Space Embeddings with Small Mixed Smoothness , 2019, Constructive Approximation.

[30]  Y. Sawano Besov‐Morrey spaces and Triebel‐Lizorkin‐Morrey spaces on domains , 2010 .

[31]  Compact Embeddings of Besov Spaces in Exponential Orlicz Spaces , 2003 .

[32]  C. Schütt Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .

[33]  D. Haroske,et al.  ENTROPY AND APPROXIMATION NUMBERS OF EMBEDDINGS OF FUNCTION SPACES WITH MUCKENHOUPT WEIGHTS, II. GENERAL WEIGHTS , 2011 .

[34]  H. Triebel Theory of Function Spaces III , 2008 .

[35]  Wen Yuan,et al.  Morrey and Campanato Meet Besov, Lizorkin and Triebel , 2010, Lecture Notes in Mathematics.

[36]  D. E. Edmunds,et al.  Entropy Numbers and Approximation Numbers in Function Spacess , 1989 .

[37]  David E. Edmunds,et al.  Schütt's theorem for vector-valued sequence spaces , 2013, J. Approx. Theory.

[38]  D. Haroske,et al.  Smoothness Morrey Spaces of regular distributions, and some unboundedness property , 2016 .

[39]  W. Sickel,et al.  Strong summability of Fourier series and generalized Morrey spaces , 2017 .

[40]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[41]  B. Carl Entropy numbers, s-numbers, and eigenvalue problems , 1981 .

[42]  Y. Sawano,et al.  Besov‐Morrey spaces and Triebel‐Lizorkin‐Morrey spaces for nondoubling measures , 2009 .

[43]  D. Haroske,et al.  Morrey Sequence Spaces: Pitt’s Theorem and Compact Embeddings , 2018, Constructive Approximation.

[44]  A. Pietsch Eigenvalue distribution of compact operators , 1986 .

[45]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[46]  J. Peetre On the theory of Lp,λ spaces , 1969 .

[47]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[48]  H. Triebel,et al.  Entropy Numbers in Weighted Function Spaces and Eigenvalue Distributions of Some Degenerate Pseudodifferential Operators II , 1994 .