Linear Fusion of Image Sets for Display

Many remote-sensing applications produce large sets of images, such as hyperspectral images or time-indexed image sequences. We explore methods to display such image sets by linearly projecting them onto basis functions designed for the red, green, and blue (RGB) primaries of a standard tristimulus display, for the human visual system, and for the signal-to-noise ratio of the dataset, creating a single color image. Projecting the data onto three basis functions reduces the information but allows each datapoint to be rendered by a single color. Principal components analysis is perhaps the most commonly used linear projection method, but it is data adaptive and, thus, yields inconsistent visualizations that may be difficult to interpret. Instead, we focus on designing fixed basis functions based on optimizing criteria in the perceptual colorspace CIELab and the standardized device colorspace sRGB. This approach yields visualizations with rich meaning that users can readily extract. Example visualizations are shown for passive radar video and Airborne Visible/Infrared Imaging Spectrometer hyperspectral imagery. Additionally, we show how probabilistic classification information can be layered on top of the visualization to create a customized nonlinear representation of an image set.

[1]  Mahdi Nezamabadi,et al.  Color Appearance Models , 2014, J. Electronic Imaging.

[2]  Xavier Otazu,et al.  Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Maya R. Gupta,et al.  Design goals and solutions for display of hyperspectral images , 2005, IEEE International Conference on Image Processing 2005.

[4]  John D. Sahr,et al.  Improved computational performance for distributed passive radar processing through channelised data , 2005 .

[5]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[6]  Maureen C. Stone,et al.  A field guide to digital color , 2003 .

[7]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[8]  J. Barnes Characteristics and control of contrast in CT. , 1992, Radiographics : a review publication of the Radiological Society of North America, Inc.

[9]  Bernice E. Rogowitz,et al.  A rule-based tool for assisting colormap selection , 1995, Proceedings Visualization '95.

[10]  Colin Ware,et al.  Color sequences for univariate maps: theory, experiments and principles , 1988, IEEE Computer Graphics and Applications.

[11]  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .

[12]  Sinthop Kaewpijit,et al.  Automatic reduction of hyperspectral imagery using wavelet spectral analysis , 2003, IEEE Trans. Geosci. Remote. Sens..

[13]  James T. Enns,et al.  Visualizing real-time multivariate data using preattentive processing , 1995, TOMC.

[14]  Steven K. Rogers,et al.  Perceptual-based image fusion for hyperspectral data , 1997, IEEE Trans. Geosci. Remote. Sens..

[15]  Jacques Bertin,et al.  Graphics and graphic information-processing , 1981 .

[16]  Maya R. Gupta,et al.  Wavelet Principal Component Analysis and its Application to Hyperspectral Images , 2006, 2006 International Conference on Image Processing.

[17]  Vassilis Tsagaris,et al.  Multispectral image fusion for improved RGB representation based on perceptual attributes , 2005 .

[18]  Myungjin Choi,et al.  A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter , 2006, IEEE Trans. Geosci. Remote. Sens..

[19]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[20]  David A. Landgrebe,et al.  Classification of high dimensional multispectral image data , 1993 .

[21]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[22]  Jiang Li,et al.  Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction , 2002, IEEE Trans. Geosci. Remote. Sens..

[23]  Luciano Alparone,et al.  Image fusion—the ARSIS concept and some successful implementation schemes , 2003 .

[24]  F. Billmeyer Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., by Gunter Wyszecki and W. S. Stiles, John Wiley and Sons, New York, 1982, 950 pp. Price: $75.00 , 1983 .

[25]  Gaurav Sharma,et al.  Digital color imaging , 1997, IEEE Trans. Image Process..

[26]  James T. Enns,et al.  Large Datasets at a Glance: Combining Textures and Colors in Scientific Visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[27]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[28]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[29]  Robert F. Erbacher,et al.  Color icon: a new design and a parallel implementation , 1995 .

[30]  Haim Levkowitz,et al.  Perceptual steps along color scales , 1996, Int. J. Imaging Syst. Technol..

[31]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[32]  Susan L. Ustin,et al.  Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico , 2005 .

[33]  J. Scott Tyo,et al.  Principal-components-based display strategy for spectral imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[34]  Jing Wang,et al.  Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[35]  P. Wintz,et al.  Information Extraction, SNR Improvement, and Data Compression in Multispectral Imagery , 1973, IEEE Trans. Commun..