A Generalized Permutation Model for the Analysis of Cross-Species Data

[1]  Simon Blomberg Fels-Rand: an Xlisp-Stat program for the comparative analysis of data under phylogenetic uncertainty , 2000, Bioinform..

[2]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[3]  János Podani Simulation of Random Dendrograms and Comparison Tests: Some Comments , 2000, J. Classif..

[4]  T. Garland,et al.  Sprint performance of phrynosomatid lizards, measured on a high‐speed treadmill, correlates with hindlimb length , 1999 .

[5]  Anthony R. Ives,et al.  An Introduction to Phylogenetically Based Statistical Methods, with a New Method for Confidence Intervals on Ancestral Values , 1999 .

[6]  T. F. Hansen,et al.  Erratum: Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data (American Naturalist 149 (646-667)) , 1999 .

[7]  E. Abouheif RANDOM TREES AND THE COMPARATIVE METHOD: A CAUTIONARY TALE , 1998, Evolution; international journal of organic evolution.

[8]  E. Edgington,et al.  Randomization Tests (3rd ed.) , 1998 .

[9]  A. W. Kemp,et al.  Randomization, Bootstrap and Monte Carlo Methods in Biology , 1997 .

[10]  T. Tregenza,et al.  Phylogenies and the Comparative Method in Animal Behaviour , 1997 .

[11]  S. Braude Phylogenies and the comparative method in animal behaviour , 1997 .

[12]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[13]  P. S. Reynolds,et al.  Phylogenetic Analysis of Avian Energetics: Passerines and Nonpasserines Do Not Differ , 1996, The American Naturalist.

[14]  P. Dutilleul,et al.  Among-environment heteroscedasticity and genetic autocorrelation: implications for the study of phenotypic plasticity. , 1995, Genetics.

[15]  T. Garland,et al.  Why Not to Do Two-Species Comparative Studies: Limitations on Inferring Adaptation , 1994, Physiological Zoology.

[16]  J. Losos An Approach to the Analysis of Comparative Data When a Phylogeny Is Unavailable or Incomplete , 1994 .

[17]  R. Vane-Wright,et al.  Phylogenetics and ecology , 1994 .

[18]  M. Pagel,et al.  Seeking the evolutionary regression coefficient: an analysis of what comparative methods measure. , 1993, Journal of theoretical biology.

[19]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[20]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[21]  Robert R. Sokal,et al.  An investigation of three-matrix permutation tests , 1992 .

[22]  N. Oden Spatial autocorrelation invalidates the Dow‐Cheverud test , 1992 .

[23]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[24]  Philip H. Crowley,et al.  RESAMPLING METHODS FOR COMPUTATION-INTENSIVE DATA ANALYSIS IN ECOLOGY AND EVOLUTION , 1992 .

[25]  L. Hubert,et al.  Combinatorial Data Analysis , 1992 .

[26]  Daniel R. Brooks,et al.  Phylogeny, Ecology, and Behavior , 1992 .

[27]  Daniel R. Brooks,et al.  The Phylogenetic Perspective. (Book Reviews: Phylogeny, Ecology, and Behavior. A Research Program in Comparative Biology.) , 1991 .

[28]  P. Legendre,et al.  The generation of random ultrametric matrices representing dendrograms , 1991 .

[29]  T. Garland,et al.  PHYLOGENY AND COADAPTATION OF THERMAL PHYSIOLOGY IN LIZARDS: A REANALYSIS , 1991, Evolution; international journal of organic evolution.

[30]  T. Garland,et al.  PHYLOGENETIC ANALYSES OF THE CORRELATED EVOLUTION OF CONTINUOUS CHARACTERS: A SIMULATION STUDY , 1991, Evolution; international journal of organic evolution.

[31]  Mark Ridley,et al.  Phylogeny, ecology, and behavior: A research program in comparative biology , 1991 .

[32]  M. Pagel,et al.  The comparative method in evolutionary biology , 1991 .

[33]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[34]  D Hémon,et al.  Assessing the significance of the correlation between two spatial processes. , 1989, Biometrics.

[35]  R. Huey,et al.  PHYLOGENETIC STUDIES OF COADAPTATION: PREFERRED TEMPERATURES VERSUS OPTIMAL PERFORMANCE TEMPERATURES OF LIZARDS , 1987, Evolution; international journal of organic evolution.

[36]  Jonathan Scott Friedlaender,et al.  Partial correlation of distance matrices in studies of population structure. , 1987, American journal of physical anthropology.

[37]  R. Sokal,et al.  Multiple regression and correlation extensions of the mantel test of matrix correspondence , 1986 .

[38]  Lawrence Hubert,et al.  Combinatorial data analysis: Association and partial association , 1985 .

[39]  M M Dow,et al.  Comparison of distance matrices in studies of population structure and genetic microdifferentiation: quadratic assignment. , 1985, American journal of physical anthropology.

[40]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[41]  János Podani,et al.  Comparison of dendrograms: a multivariate approach , 1984 .

[42]  E. Dietz Permutation Tests for Association Between Two Distance Matrices , 1983 .

[43]  John A. Endler,et al.  Quantitative Matrix Comparisons in Ecological and Evolutionary Investigations , 1982 .

[44]  Robert R. Sokal,et al.  Testing Statistical Significance of Geographic Variation Patterns , 1979 .

[45]  L. Hubert,et al.  Quadratic assignment as a general data analysis strategy. , 1976 .

[46]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[47]  J. Hartigan REPRESENTATION OF SIMILARITY MATRICES BY TREES , 1967 .

[48]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[49]  R Fisher,et al.  Design of Experiments , 1936 .

[50]  A. I.,et al.  Neural Field Continuum Limits and the Structure–Function Partitioning of Cognitive–Emotional Brain Networks , 2023, Biology.