Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip

This paper reviews the remarkable developments of the magnetic tunnel junction over the last decade and in particular, work aimed at demonstrating its potential for a dense, fast, and nonvolatile random access memory. The initial focus is on the technological roots of the magnetic tunnel junction, and then on the recent progress made with engineered materials for this device. Following that, we discuss the development of the magnetic random access memory (MRAM) technology, in which the magnetic tunnel junction serves as both the storage device and the storage sensing device. The emphasis is on work at IBM, including demonstrations of basic capabilities of the technology and work on a 16-Mb "product demonstrator" design in 180-nm node technology, which was targeted to be a realistic test bed for the MRAM technology. Performance and cost are compared with those of competing technologies. The paper also serves as an introduction to more specialized papers in this issue on MRAM device physics, magnetic tunnel junction materials and device characterization, MRAM processing, and MRAM design.

[1]  Slonczewski Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. , 1989, Physical review. B, Condensed matter.

[2]  J. Slaughter,et al.  A low power 1 Mbit MRAM based on 1T1MTJ bit cell integrated with copper interconnects , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[3]  D. L. Critchlow,et al.  Solid state memory development in IBM , 1981 .

[4]  V. Speriosu,et al.  Spin-valve RAM cell , 1995 .

[5]  Lei Wang,et al.  Spin tunneling heads above 20 Gb/in/sup 2/ , 2002 .

[6]  William J. Gallagher,et al.  Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited) , 1999 .

[7]  Parkin,et al.  Oscillatory magnetic exchange coupling through thin copper layers. , 1991, Physical review letters.

[8]  U. Gafvert,et al.  Electron tunneling between ferromagnetic films , 1982 .

[9]  R. R. Katti Giant magnetoresistive random-access memories based on current-in-plane devices , 2003 .

[10]  Lee,et al.  Perpendicular giant magnetoresistances of Ag/Co multilayers. , 1991, Physical review letters.

[11]  Philip Louis Trouilloud,et al.  Rapid-turnaround characterization methods for MRAM development , 2006, IBM J. Res. Dev..

[12]  Yu Lu,et al.  Two-level BEOL processing for rapid iteration in MRAM development , 2006, IBM J. Res. Dev..

[13]  M.A. Washington,et al.  Nb Josephson tunnel junctions with thin layers of Al near the barrier , 1981, 1981 International Electron Devices Meeting.

[14]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[15]  I. N. Krivorotov,et al.  Spin-transfer effects in nanoscale magnetic tunnel junctions , 2004, cond-mat/0404002.

[16]  Daniel Christopher Worledge Single-domain model for toggle MRAM , 2006, IBM J. Res. Dev..

[17]  Y. Huai,et al.  Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions , 2004, cond-mat/0504486.

[18]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[19]  William J. Gallagher,et al.  Josephson integrated circuit process for scientific applications , 1987 .

[20]  B. Dieny,et al.  Thermally assisted switching in exchange-biased storage layer magnetic tunnel junctions , 2004, IEEE Transactions on Magnetics.

[21]  R. Scheuerlein,et al.  A 10 ns read and write non-volatile memory array using a magnetic tunnel junction and FET switch in each cell , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[22]  J. Rowell,et al.  Modification of tunneling barriers on Nb by a few monolayers of Al , 1981 .

[23]  Jonathan Z. Sun,et al.  Spin angular momentum transfer in current-perpendicular nanomagnetic junctions , 2006, IBM J. Res. Dev..

[24]  John E. Barth,et al.  Embedded DRAM: Technology platform for the Blue Gene/L chip , 2005, IBM J. Res. Dev..

[25]  Stuart A. Wolf,et al.  Spintronics - A retrospective and perspective , 2006, IBM J. Res. Dev..

[26]  R. E. Scheuerlein Magneto-resistive IC memory limitations and architecture implications , 1998, Seventh Biennial IEEE International Nonvolatile Memory Technology Conference. Proceedings (Cat. No.98EX141).

[27]  J. Slaughter Recent Advances in MRAM Technology , 2007, 2007 65th Annual Device Research Conference.

[28]  William J. Gallagher,et al.  Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography , 1997 .

[29]  Mark B. Ketchen,et al.  Josephson cross‐sectional model experiment , 1985 .

[30]  Slonczewski Jc,et al.  Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. , 1989 .

[31]  William J. Gallagher,et al.  Sub‐μm, planarized, Nb‐AlOx‐Nb Josephson process for 125 mm wafers developed in partnership with Si technology , 1991 .

[32]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[33]  S. Yuasa,et al.  High Tunnel Magnetoresistance at Room Temperature in Fully Epitaxial Fe/MgO/Fe Tunnel Junctions due to Coherent Spin-Polarized Tunneling , 2004 .

[34]  P. L. Trouilloud,et al.  Magnetoresistance measurement of unpatterned magnetic tunnel junction wafers by current-in-plane tunneling , 2003 .

[35]  Xin Jiang,et al.  Highly Efficient Room-temperature Tunnel Spin Injector Using Cofe/mgo(001) , 2022 .

[36]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[37]  J. Daughton,et al.  70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference Layers , 2004, IEEE Transactions on Magnetics.

[38]  Shunji Ishio,et al.  Large magnetoresistance effect in 82Ni-Fe/Al-Al2O3/Co magnetic tunneling junction , 1991 .

[39]  H. Hoenigschmid,et al.  A 16Mb MRAM featuring bootstrapped write drivers , 2004, 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.04CH37525).

[40]  Bernard Dieny,et al.  Magnetotransport properties of magnetically soft spin‐valve structures (invited) , 1991 .

[41]  A. Schuhl,et al.  High tunnel magnetoresistance in epitaxial Fe/MgO/Fe tunnel junctions , 2003 .

[42]  Janusz J. Nowak,et al.  Spin dependent electron tunneling between ferromagnetic films , 1992 .

[43]  John K. DeBrosse,et al.  Design considerations for MRAM , 2006, IBM J. Res. Dev..

[44]  Frank Wang Diode-free magnetic random access memory using spin-dependent tunneling effect , 2000 .

[45]  H. Hoenigschmid,et al.  A high-speed 128-kb MRAM core for future universal memory applications , 2004, IEEE Journal of Solid-State Circuits.

[46]  Stuart S. P. Parkin,et al.  Thermal stability of IrMn and MnFe exchange-biased magnetic tunnel junctions , 2000 .

[47]  Gijs,et al.  Perpendicular giant magnetoresistance of microstructured Fe/Cr magnetic multilayers from 4.2 to 300 K. , 1993, Physical review letters.

[48]  Tetsuya Mizuguchi,et al.  MRAM with improved magnetic tunnel junction material , 2002 .

[49]  Stuart S. P. Parkin,et al.  Giant Magnetoresistance in Magnetic Nanostructures , 1995 .

[50]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .

[51]  P. M. Tedrow,et al.  Spin-polarized electron tunneling , 1994 .

[52]  Parkin,et al.  The magnetic stability of spin-dependent tunneling devices , 1998, Science.

[53]  W. Anacker,et al.  Josephson Computer Technology: An IBM Research Project , 1980, IBM J. Res. Dev..

[54]  A. Umerski,et al.  Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction , 2001 .

[55]  Saied N. Tehrani,et al.  Thermally activated magnetization reversal in submicron magnetic tunnel junctions for magnetoresistive random access memory , 2002 .

[56]  J. Daughton Magnetoresistive memory technology , 1992 .

[57]  I. Giaever,et al.  Energy gap in superconductors measured by electron tunneling. [Al-AlO-Pb] , 1960 .

[58]  William J. Gallagher,et al.  Three-terminal superconducting devices , 1985 .

[59]  K. Tsunekawa,et al.  230% room temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[60]  A. Panchula,et al.  Magnetically engineered spintronic sensors and memory , 2003, Proc. IEEE.

[61]  S. Parkin,et al.  Giant magnetoresistance in antiferromagnetic Co/Cu multilayers , 1991 .

[62]  T. Miyazaki,et al.  Magnetoresistance in 82Ni-Fe/Al-Al2O3/Co Junction-Dependence of the Tunneling Conductance on the Angle between the Magnetizations of Two Ferromagnetic Layers , 1993, IEEE Translation Journal on Magnetics in Japan.

[63]  P. M. Tedrow,et al.  Spin-Dependent Tunneling into Ferromagnetic Nickel , 1971 .

[64]  Robert E. Fontana,et al.  Low-field magnetoresistance in magnetic tunnel junctions prepared by contact masks and lithography: 25% magnetoresistance at 295 K in mega-ohm micron-sized junctions (abstract) , 1997 .

[65]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[66]  J. Matisoo Tunneling crytron using the josephson effect , 1968 .

[67]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .