Spatial modelling of total storm rainfall

The spatial structure of the depth of rainfall from a stationary storm event is investigated by using point process techniques. Cells are assumed to be stationary and to be distributed in space either independently according to a Poisson process, or with clustering according to a Neyman-Scott scheme. Total storm rainfall at the centre of each cell is a random variable and rainfall is distributed around the centre in a way specified by a spread function that may incorporate random parameters. The mean, variance and covariance structure of the precipitation depth at a point are obtained for different spread functions. For exponentially distributed centre depth and a spread function having quadratically exponential decay, the total storm depth at any point in the field is shown to have a gamma distribution. The probability of zero rainfall at a point is investigated, as is the stochastic variability of model parameters from storm to storm. Data from the Upper Rio Guaire basin in Venezuela are used in illustration.