Solid-State Nanopore

Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: “top-down” etching technology and “bottom-up” shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

[1]  M. J. Kim,et al.  Chemically modified solid state nanopores for high throughput nanoparticle separation , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Andreas Zürner,et al.  Fabrication of metallized nanopores in silicon nitride membranes for single-molecule sensing. , 2010, Small.

[3]  Ralph G Nuzzo,et al.  Microfluidic devices for energy conversion: planar integration and performance of a passive, fully immersed H2-O2 fuel cell. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[4]  P. Hawkes,et al.  Exploration of the ultimate patterning potential achievable with high resolution focused ion beams , 2005 .

[5]  Yunfei Chen,et al.  Integrated solid-state nanopore devices for third generation DNA sequencing , 2014 .

[6]  Lei Jiang,et al.  Energy Harvesting with Single‐Ion‐Selective Nanopores: A Concentration‐Gradient‐Driven Nanofluidic Power Source , 2010 .

[7]  Alyson V. Whitney,et al.  Sub-100 nm Triangular Nanopores Fabricated with the Reactive Ion Etching Variant of Nanosphere Lithography and Angle-Resolved Nanosphere Lithography , 2004 .

[8]  K. Vafai,et al.  Analysis of two-layered micro-channel heat sink concept in electronic cooling , 1999 .

[9]  Michael M. Marshall Solid-state nanopores: A new platform for DNA biomarker discovery , 2014 .

[10]  R. Crooks,et al.  Observation of DNA transport through a single carbon nanotube channel using fluorescence microscopy. , 2003, Chemical communications.

[11]  G. Borghs,et al.  Synthesis of Well-Ordered Nanopores by Anodizing Aluminum Foils in Sulfuric Acid , 2002 .

[12]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[13]  L. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[14]  C. Lim,et al.  Isoporous micro/nanoengineered membranes. , 2013, ACS nano.

[15]  T. Deng,et al.  Fabrication of Inverted-Pyramid Silicon Nanopore Arrays with Three-Step Wet Etching , 2013 .

[16]  K. Jiang,et al.  The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography , 2009, Nanotechnology.

[17]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[18]  M. Mcfarland,et al.  Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals. , 2005, Journal of the American Chemical Society.

[19]  Shen-ming Chen,et al.  Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite , 2013, Microchimica Acta.

[20]  Cees Dekker,et al.  Fast translocation of proteins through solid state nanopores. , 2013, Nano letters.

[21]  Luis Castañer,et al.  Dynamics of MEMS electrostatic driving using a photovoltaic source , 2005 .

[22]  Chenguo Hu,et al.  High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres , 2015 .

[23]  A. Meller,et al.  Rapid Fabrication of Uniformly Sized Nanopores and Nanopore Arrays for Parallel DNA Analysis , 2006 .

[24]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[25]  Jianyu Liang,et al.  Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template , 2002 .

[26]  A. Majumdar,et al.  Electrochemomechanical Energy Conversion in Nanofluidic Channels , 2004 .

[27]  Jin Zhai,et al.  Bio‐inspired Photoelectric Conversion Based on Smart‐Gating Nanochannels , 2010 .

[28]  Y. Long,et al.  A 30 nm Nanopore Electrode: Facile Fabrication and Direct Insights into the Intrinsic Feature of Single Nanoparticle Collisions. , 2018, Angewandte Chemie.

[29]  T. Deng,et al.  Fabrication of Silicon Nanopore Arrays with Three-Step Wet Etching , 2013 .

[30]  Peng Chen,et al.  Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. , 2004, Nano letters.

[31]  J. Shendure,et al.  Advanced sequencing technologies: methods and goals , 2004, Nature Reviews Genetics.

[32]  Y. Long,et al.  Nanopore confinement for electrochemical sensing at the single-molecule level , 2018 .

[33]  Rui Gao,et al.  Nanopore-based sequencing and detection of nucleic acids. , 2013, Angewandte Chemie.

[34]  X. Miao,et al.  Short channel effects on electrokinetic energy conversion in solid-state nanopores , 2017, Scientific Reports.

[35]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[36]  A. Meller,et al.  Direct Sensing and Discrimination among Ubiquitin and Ubiquitin Chains Using Solid-State Nanopores. , 2015, Biophysical journal.

[37]  Wei Wu,et al.  Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography , 2004 .

[38]  Shanshan Wu,et al.  Lithography-free formation of nanopores in plastic membranes using laser heating. , 2006, Nano letters.

[39]  Kyle Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2014, PloS one.

[40]  Lei Jiang,et al.  Biomimetic Solid-State Nanochannels: From Fundamental Research to Practical Applications. , 2016, Small.

[41]  Hongbo Peng,et al.  Fabrication of nanopores in silicon chips using feedback chemical etching. , 2007, Small.

[42]  D. McNabb,et al.  Electrical characterization of protein molecules by a solid-state nanopore. , 2007, Applied physics letters.

[43]  Masateru Taniguchi,et al.  Selective multidetection using nanopores. , 2015, Analytical chemistry.

[44]  Alexey Bezryadin,et al.  Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams , 2006 .

[45]  Oliver K Castell,et al.  High-throughput optical sensing of nucleic acids in a nanopore array , 2015, Nature nanotechnology.

[46]  H. Low,et al.  Wafer-scale near-perfect ordered porous alumina on substrates by step and flash imprint lithography. , 2010, ACS nano.

[47]  D. Talaga,et al.  Single-molecule protein unfolding in solid state nanopores. , 2009, Journal of the American Chemical Society.

[48]  Lei Jiang,et al.  Energy harvesting with bio-inspired synthetic nanochannels , 2011 .

[49]  L. Lagae,et al.  Shrinking solid-state nanopores using electron-beam-induced deposition , 2009, Nanotechnology.

[50]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Rui Gao,et al.  An integrated current measurement system for nanopore analysis , 2014 .

[52]  Theodore D. Moustakas,et al.  Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores , 2013, Nature nanotechnology.

[53]  Wei Zhang,et al.  Sub-10 nm imprint lithography and applications , 1997, 1997 55th Annual Device Research Conference Digest.

[54]  Sheng Dai,et al.  Water desalination using nanoporous single-layer graphene. , 2015, Nature nanotechnology.

[55]  Zhiping Weng,et al.  Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. , 2010, Nano letters.

[56]  Kyeong-Beom Park,et al.  A Low-Noise Solid-State Nanopore Platform Based on a Highly Insulating Substrate , 2014, Scientific Reports.

[57]  G. Patriarche,et al.  Protein transport through a narrow solid-state nanopore at high voltage: experiments and theory. , 2012, ACS nano.

[58]  Jacob K Rosenstein,et al.  High-bandwidth protein analysis using solid-state nanopores. , 2014, Biophysical journal.

[59]  M. Langecker,et al.  Fabrication and electrical characterization of a pore–cavity–pore device , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  H. W. Zandbergen,et al.  Electron-beam-induced deformations of SiO2 nanostructures , 2005 .

[61]  L. Yobas,et al.  Slowing DNA Translocation in a Nanofluidic Field-Effect Transistor. , 2016, ACS nano.

[62]  S. Wei,et al.  Integrated solid-state nanopore devices for third generation DNA sequencing , 2014 .

[63]  A. Meller,et al.  Two Color DNA Barcode Detection in Photoluminescence Suppressed Silicon Nitride Nanopores , 2014, Nano letters.

[64]  Q. Ouyang,et al.  Controllable shrinking and shaping of silicon nitride nanopores under electron irradiation , 2007 .

[65]  Anirban Garai,et al.  Steric effect and slip‐modulated energy transfer in narrow fluidic channels with finite aspect ratios , 2010, Electrophoresis.

[66]  Michael J. Sailor,et al.  Real-time monitoring of enzyme activity in a mesoporous silicon double layer , 2009, Nature nanotechnology.

[67]  Amit Meller,et al.  Fabrication and characterization of solid-state nanopore arrays for high-throughput DNA sequencing , 2012, Nanotechnology.

[68]  Ye Tian,et al.  Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels , 2016 .

[69]  Ruhong Zhou,et al.  Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol , 2012, Nanotechnology.

[70]  J. Meyer,et al.  Nanopore fabrication and characterization by helium ion microscopy , 2016, 1805.00292.

[71]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[72]  Lei Jiang,et al.  Conversion of Light to Electricity by Photoinduced Reversible pH Changes and Biomimetic Nanofluidic Channels , 2013 .

[73]  Klaus Schulten,et al.  Computational investigation of DNA detection using graphene nanopores. , 2011, ACS nano.

[74]  P. Batson,et al.  Formation of nanopores in a SiN/SiO2 membrane with an electron beam , 2005 .