An alternate construction of an access-optimal regenerating code with optimal sub-packetization level

Given the scale of today's distributed storage systems, the failure of an individual node is a common phenomenon. Various metrics have been proposed to measure the efficacy of the repair of a failed node, such as the amount of data download needed to repair (also known as the repair bandwidth), the amount of data accessed at the helper nodes, and the number of helper nodes contacted. Clearly, the amount of data accessed can never be smaller than the repair bandwidth. In the case of a help-by-transfer code, the amount of data accessed is equal to the repair bandwidth. It follows that a help-by-transfer code possessing optimal repair bandwidth is access optimal. The focus of the present paper is on help-by-transfer codes that employ minimum possible bandwidth to repair the systematic nodes and are thus access optimal for the repair of a systematic node. The zigzag construction by Tamo et al. in which both systematic and parity nodes are repaired is access optimal. But the sub-packetization level required is rk where r is the number of parities and k is the number of systematic nodes. To date, the best known achievable sub-packetization level for access-optimal codes is rk/r in a MISER-code-based construction by Cadambe et al. in which only the systematic nodes are repaired and where the location of symbols transmitted by a helper node depends only on the failed node and is the same for all helper nodes. Under this set-up, it turns out that this sub-packetization level cannot be improved upon. In the present paper, we present an alternate construction under the same setup, of an access-optimal code repairing systematic nodes, that is inspired by the zigzag code construction and that also achieves a sub-packetization level of rk/r.

[1]  Kannan Ramchandran,et al.  Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions , 2010, IEEE Transactions on Information Theory.

[2]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[3]  Cheng Huang,et al.  Polynomial length MDS codes with optimal repair in distributed storage , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[4]  Jehoshua Bruck,et al.  Access vs. bandwidth in codes for storage , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[5]  Jehoshua Bruck,et al.  On codes for optimal rebuilding access , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).