A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture.

Na2(B12H12)0.5(B10H10)0.5, a new solid-state sodium electrolyte is shown to offer high Na+ conductivity of 0.9 mS cm-1 at 20 °C, excellent thermal stability up to 300 °C, and a large electrochemical stability window of 3 V including stability towards sodium metal anodes, all essential prerequisites for a stable room-temperature 3 V all-solid-state sodium-ion battery.

[1]  J. R. Downing,et al.  Chemistry of Boranes. III.1 The Infrared and Raman Spectra of B12H12 - and Related Anions , 1962 .

[2]  E. Muetterties,et al.  Chemistry of Boranes. VIII. Salts and Acids of B10H10-2 and B1212-2 , 1964 .

[3]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[4]  J. Bates,et al.  Ionic conductivity of sodium beta″-alumina , 1981 .

[5]  Electrochemistry of boron compounds , 1985 .

[6]  F. Lefebvre,et al.  Phase transition investigations of closo-hydroborates , 1992 .

[7]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[8]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[9]  V. Stavila,et al.  Anion Reorientations in the Superionic Conducting Phase of Na2B12H12 , 2014 .

[10]  S. Orimo,et al.  Sodium superionic conduction in Na2B12H12. , 2014, Chemical communications.

[11]  V. Stavila,et al.  Complex high-temperature phase transitions in Li2B12H12 and Na2B12H12 , 2014 .

[12]  Hui Wu,et al.  Exceptional Superionic Conductivity in Disordered Sodium Decahydro‐closo‐decaborate , 2014, Advanced materials.

[13]  P. Jena,et al.  Superhalogens as building blocks of halogen-free electrolytes in lithium-ion batteries. , 2014, Angewandte Chemie.

[14]  Rana Mohtadi,et al.  An Efficient Halogen-Free Electrolyte for Use in Rechargeable Magnesium Batteries. , 2015, Angewandte Chemie.

[15]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[16]  R. Černý,et al.  Superionic Conduction of Sodium and Lithium in Anion‐Mixed Hydroborates Na3BH4B12H12 and (Li0.7Na0.3)3BH4B12H12 , 2015 .

[17]  H. Hagemann,et al.  Synthesis of a Bimetallic Dodecaborate LiNaB12H12 with Outstanding Superionic Conductivity , 2015 .

[18]  V. Stavila,et al.  Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. , 2015, Energy & environmental science.

[19]  A. Remhof,et al.  Complex metal borohydrides: multifunctional materials for energy storage and conversion , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  E. Akiba,et al.  Metal boranes: Progress and applications , 2016 .

[21]  Z. Deng,et al.  Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor , 2016, Scientific Reports.

[22]  Seung M. Oh,et al.  Na3 SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[23]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[24]  V. Stavila,et al.  Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-borate Salts , 2016 .

[25]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[26]  V. Stavila,et al.  Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures , 2016 .

[27]  H. Hagemann,et al.  A theoretical study of the spectroscopic properties of B2H6 and of a series of BxHyz− species (x = 1−12, y = 3−14, z = 0−2): From BH3 to B12H122− , 2016 .

[28]  V. Stavila,et al.  Liquid‐Like Ionic Conduction in Solid Lithium and Sodium Monocarba‐closo‐Decaborates Near or at Room Temperature , 2016 .

[29]  Chunsheng Wang,et al.  Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes , 2016 .

[30]  Shyue Ping Ong,et al.  Design and synthesis of the superionic conductor Na10SnP2S12 , 2016, Nature Communications.

[31]  V. Stavila,et al.  Comparison of Anion Reorientational Dynamics in MCB9H10 and M2B10H10 (M = Li, Na) via Nuclear Magnetic Resonance and Quasielastic Neutron Scattering Studies , 2017 .

[32]  Prateek Mehta,et al.  Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics , 2017 .