A hydrodynamically focused stream as a dynamic template for site-specific electrochemical micropatterning of conducting polymers.

Micropatterning technology[1–3] has been a major driving force behind the development of organic microelectronic devices. There have been significant efforts devoted to exploring this technology for the fabrication of conducting polymer (CP)-based devices in particular, because CPs[4–6] exhibit the unique advantages of tunable conductance, chemical specificity, flexible modification, and low fabrication cost. In general, most of the existing micropatterning approaches,[1–3] for example, the embossing method,[7] imprint lithography,[8] capillary molding,[9, 10] and microcontact printing,[11, 12] require the use of prefabricated solid molds or templates to determine the features and dimensions of the micropatterns. These molds and templates are normally fabricated by lithographic means, so their embedded features are very much fixed and it is unlikely that they would be reprogrammed for different micropattern features.

[1]  G. Sukhorukov,et al.  Polyelectrolyte Micropatterning Using a Laminar‐Flow Microfluidic Device , 2004 .

[2]  Feng Zhou,et al.  Fabrication of Positively Patterned Conducting Polymer Microstructures via One‐Step Electrodeposition , 2003 .

[3]  A. MacDiarmid,et al.  "Synthetic Metals": A Novel Role for Organic Polymers (Nobel Lecture). , 2001, Angewandte Chemie.

[4]  Hideki Shirakawa,et al.  The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture). , 2001, Angewandte Chemie.

[5]  Patrick J. Smith,et al.  Plasma treatment of polydimethylsiloxane , 1994 .

[6]  John A Rogers,et al.  In situ deposition and patterning of single-walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels. , 2006, Angewandte Chemie.

[7]  A. Heeger Halbleitende und metallische Polymere: polymere Materialien der vierten Generation (Nobel-Vortrag) , 2001 .

[8]  H. Shirakawa Die Entdeckung der Polyacetylenfilme – der Beginn des Zeitalters leitfähiger Polymere (Nobel-Aufsatz) , 2001 .

[9]  Jiri Janata,et al.  Conducting polymers in electronic chemical sensors , 2003, Nature materials.

[10]  John A. Rogers,et al.  Nonphotolithographic fabrication of organic transistors with micron feature sizes , 1998 .

[11]  G. Lu,et al.  Polypyrrole micro- and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid , 2006 .

[12]  D. Beebe,et al.  Controlled microfluidic interfaces , 2005, Nature.

[13]  Cheng Luo,et al.  Innovative approach for replicating micropatterns in a conducting polymer , 2006 .

[14]  Jun Wang,et al.  Electrochemically Fabricated Polyaniline Nanoframework Electrode Junctions that Function as Resistive Sensors , 2004 .

[15]  Akira Baba,et al.  Electrochemical growth of dendritic conducting polymer networks , 2003 .

[16]  R. Austin,et al.  Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds , 1998 .

[17]  A. G. Macdiarmid „Synthetische Metalle“: eine neue Rolle für organische Polymere (Nobel-Vortrag) , 2001 .

[18]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[19]  B. Costello,et al.  The synthesis of a number of 3-alkyl and 3-carboxy substituted pyrroles; their chemical polymerisation onto poly(vinylidene fluoride) membranes, and their use as gas sensitive resistors , 2000 .

[20]  G. Whitesides,et al.  Microfabrication inside capillaries using multiphase laminar flow patterning , 1999, Science.

[21]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[22]  G. Whitesides,et al.  Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels , 2000 .

[23]  G. Whitesides,et al.  Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. , 2002, Accounts of chemical research.

[24]  A. Heeger,et al.  Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials , 2001, Angewandte Chemie.

[25]  Yaoyao Guo,et al.  Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system. , 2006, Chemical communications.

[26]  George M. Whitesides,et al.  Large-Area Patterning by Vacuum-Assisted Micromolding , 1999 .

[27]  Shanhui Fan,et al.  Extracting Light from Polymer Light‐Emitting Diodes Using Stamped Bragg Gratings , 2004 .

[28]  S. Cosnier,et al.  Electrogeneration of a Hydrophilic Cross‐Linked Polypyrrole Film for Enzyme Electrode Fabrication. Application to the Amperometric Detection of Glucose , 2001 .

[29]  M. Geissler,et al.  Patterning: Principles and Some New Developments , 2004 .

[30]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[31]  John A. Rogers,et al.  Micro‐ and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems , 2007 .