CrystalCMP: automatic comparison of molecular structures.

This article describes new developments in the CrystalCMP software. In particular, an automatic procedure for comparison of molecular packing is presented. The key components are an automated procedure for fragment selection and the replacement of the angle calculation by root-mean-square deviation of atomic positions. The procedure was tested on a large data set taken from the Cambridge Structural Database (CSD) and the results of all the comparisons were saved as an HTML page, which is freely available on the web. The analysis of the results allowed estimation of the threshold for identification of identical packing and allowed duplicates and entries with potentially incorrect space groups to be found in the CSD.

[1]  Moussa,et al.  Symmetry breaking and structural changes at the neutral-to-ionic transition in tetrathiafulvalene-p-chloranil. , 1995, Physical review. B, Condensed matter.

[2]  H. Charles Romesburg,et al.  Cluster analysis for researchers , 1984 .

[3]  James A. Chisholm,et al.  COMPACK: a program for identifying crystal structure similarity using distances , 2005 .

[4]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[5]  J. C. Schön,et al.  CMPZ– an algorithm for the efficient comparison of periodic structures , 2006 .

[6]  B. Rohde,et al.  Continuous similarity measure between nonoverlapping X‐ray powder diagrams of different crystal modifications , 1993, J. Comput. Chem..

[7]  P Verwer,et al.  Method for the computational comparison of crystal structures. , 2005, Acta crystallographica. Section B, Structural science.

[8]  E. Makovicky,et al.  Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature Subcommittee on the Nomenclature of Inorganic Structure Types , 1990 .

[9]  Emre S. Tasci,et al.  Comparison of structures applying the tools available at the Bilbao Crystallographic Server , 2016 .

[10]  Gábor Csányi,et al.  Comparing molecules and solids across structural and alchemical space. , 2015, Physical chemistry chemical physics : PCCP.

[11]  J. Rohlíček,et al.  CrystalCMP: an easy‐to‐use tool for fast comparison of molecular packing , 2016 .

[12]  A. P. Shevchenko,et al.  Applied Topological Analysis of Crystal Structures with the Program Package ToposPro , 2014 .

[13]  D. Stalke,et al.  Phase transition of [2,2]-paracyclophane--an end to an apparently endless story. , 2014, Chemistry.

[14]  R. Wehrens,et al.  A generalized expression for the similarity of spectra: application to powder diffraction pattern classification , 2001, J. Comput. Chem..

[15]  Jan Kroon,et al.  Fast clustering of equivalent structures in crystal structure prediction , 1997, J. Comput. Chem..

[16]  A. Oganov,et al.  Crystal fingerprint space--a novel paradigm for studying crystal-structure sets. , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[17]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[18]  Michael B. Hursthouse,et al.  A versatile procedure for the identification, description and quantification of structural similarity in molecular crystals , 2005 .

[19]  R. E. Marsh Space group Cc: an update. , 2004, Acta crystallographica. Section B, Structural science.

[20]  Michael B. Hursthouse,et al.  XPac dissimilarity parameters as quantitative descriptors of isostructurality: the case of fourteen 4,5′-substituted benzenesulfonamido-2-pyridines obtained by substituent interchange involving CF3/I/Br/Cl/F/Me/H , 2012 .

[21]  A. V. Dzyabchenko Method of crystal-structure similarity searching , 1994 .