Pore and microstructure change induced by SiC whiskers and particles in porous TiB2–TiC–Ti3SiC2 composites

[1]  Wei Liu,et al.  Effects of B4C particle size on pore structures of porous TiB2–TiC by reaction synthesis , 2015 .

[2]  Yonghong Cheng,et al.  Theoretical study of structural, mechanical, thermal and electronic properties of Ti3B4 with Ta3B4 structure under high pressure , 2015 .

[3]  H. Cui,et al.  Microstructure and properties of plasma remelted AZ91D magnesium alloy , 2015 .

[4]  M. Zakeri,et al.  High frequency induction heated sintering of nanostructured Al2O3–ZrB2 composite produced by MASHS technique , 2014 .

[5]  B. Liang Combustion synthesis of Ti3SiC2 induced by spark plasma sintering , 2013 .

[6]  Y. X. Wu,et al.  Effect of laser scanning speed on TiN/TiB–Ti based composite , 2013 .

[7]  Xin-hong Wang,et al.  Production of in situ TiB2+TiC/Fe composite coating from precursor containing B4C-TiO2-Al powders by laser cladding , 2013 .

[8]  Jilin Wang,et al.  A self-propagation high-temperature synthesis and annealing route to synthesis of wave-like boron nitride nanotubes , 2013 .

[9]  B. Aminikia Investigation of the pre-milling effect on synthesis of nanocrystalline TiB2–TiC composite prepared by SHS method , 2012 .

[10]  H. Miao,et al.  Effect of SiC nano-whisker addition on TiCN-based cermets prepared by spark plasma sintering , 2012 .

[11]  Xinghong Zhang,et al.  The hybrid effect of SiC whisker coupled with ZrO2 fiber on microstructure and mechanical properties of ZrB2-based ceramics , 2012 .

[12]  Lai-fei Cheng,et al.  In situ synthesis and microstructure characterization of TiC–TiB2–SiC ultrafine composites from hybrid precursor , 2012 .

[13]  Chien-Chong Chen,et al.  Formation mechanism of Ti3SiC2 from a TiC lattice: An electron microscopic study , 2012 .

[14]  W. Gu,et al.  Oxidation behavior and kinetics of in situ (TiB2 + TiC)/Ti3SiC2 composites in air , 2012 .

[15]  F. Deorsola,et al.  Nanostructured TiC–TiB2 composites obtained by adding carbon nanotubes into the self-propagating high-temperature synthesis process , 2011 .

[16]  S. R. Bakshi,et al.  In-situ synthesis of TiC/SiC/Ti3SiC2 composite coatings by spark plasma sintering , 2011 .

[17]  R. Pailler,et al.  Fabrication and characterization of sintered TiC–SiC composites , 2011 .

[18]  Y. F. Kargin,et al.  Microstructure and properties of SiC-whisker-reinforced Si3N4 ceramics with calcium aluminate additions , 2010 .

[19]  Xiaoguang Ma,et al.  Influence of trace boron on the morphology of titanium carbide in an Al–Ti–C–B master alloy , 2010 .

[20]  S. Du,et al.  Effect of sintering temperature and holding time on the microstructure and mechanical properties of ZrB2–SiCw composites , 2009 .

[21]  F. Deorsola,et al.  Synthesis of TiC–TiB2–Ni cermets by thermal explosion under pressure , 2009 .

[22]  Y. F. Yang,et al.  Effect of Cu content on the reaction behaviors of self-propagating high-temperature synthesis in Cu–Ti–B4C system , 2008 .

[23]  Shibo Li,et al.  Formation of TiC hexagonal platelets and their growth mechanism , 2008 .

[24]  S. Diplas,et al.  A TiB2 metal matrix composite coating enriched with nitrogen: Microstructure and wear properties , 2008 .

[25]  F. Akhtar,et al.  Reactive sintering and properties of TiB2 and TiC porous cermets , 2008 .

[26]  A. Chrysanthou,et al.  TiC-TiB2 composites : A review of phase relationships, processing and properties , 2008 .

[27]  Q. Jiang,et al.  Reaction mechanism in self-propagating high temperature synthesis of TiC-TiB2/Al composites from an Al-Ti-B4C system , 2007 .

[28]  Q. Jiang,et al.  Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni–Ti–B4C and Ni–Ti–B4C–C systems during casting , 2007 .

[29]  J. Emmerlich,et al.  Thermal stability of Ti3SiC2 thin films , 2007 .

[30]  Lianjun Wang,et al.  Microstructure Characterization and Mechanical Properties of TiSi2–SiC–Ti3SiC2 Composites Prepared by Spark Plasma Sintering , 2006 .

[31]  G. Altankov,et al.  Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification , 2005 .

[32]  Y. Tian,et al.  ANALYSIS OF GROWTH MECHANISM OF DENDRITIC TITANIUM CARBIDES PRODUCED BY LASER ALLOYING OF PURE TITANIUM WITH GRAPHITE POWDER , 2005 .

[33]  Yanchun Zhou,et al.  Crystallographic relations between Ti3SiC2 and TiC , 2000 .

[34]  B. I. Smirnov,et al.  Mechanical properties and microstructure of an Al2O3–SiC–TiC composite , 1998 .

[35]  M. Hoffmann,et al.  Mechanical properties of hot-pressed SiC-TiB2/TiC composites synthesizedin situ , 1993 .

[36]  F. Thévenot,et al.  Ceramic composites: TiB2-TiC-SiC , 1991 .

[37]  F. Thévenot,et al.  Ceramic composites: TiB2-TiC-SiC , 1991 .

[38]  K. Nakano,et al.  Fabrication and properties of hot-pressed SiC whisker-reinforced TiB2 and TiC composites , 1989 .