Interactive Volume Visualization of General Polyhedral Grids

This paper presents a novel framework for visualizing volumetric data specified on complex polyhedral grids, without the need to perform any kind of a priori tetrahedralization. These grids are composed of polyhedra that often are non-convex and have an arbitrary number of faces, where the faces can be non-planar with an arbitrary number of vertices. The importance of such grids in state-of-the-art simulation packages is increasing rapidly. We propose a very compact, face-based data structure for representing such meshes for visualization, called two-sided face sequence lists (TSFSL), as well as an algorithm for direct GPU-based ray-casting using this representation. The TSFSL data structure is able to represent the entire mesh topology in a 1D TSFSL data array of face records, which facilitates the use of efficient 1D texture accesses for visualization. In order to scale to large data sizes, we employ a mesh decomposition into bricks that can be handled independently, where each brick is then composed of its own TSFSL array. This bricking enables memory savings and performance improvements for large meshes. We illustrate the feasibility of our approach with real-world application results, by visualizing highly complex polyhedral data from commercial state-of-the-art simulation packages.

[1]  Thomas Ertl,et al.  Convexification of Unstructured Grids , 2004, VMV.

[2]  Cass W. Everitt,et al.  Interactive Order-Independent Transparency , 2001 .

[3]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[4]  Daniel Cohen-Or,et al.  GPU-assisted positive mean value coordinates for mesh deformations , 2007, Symposium on Geometry Processing.

[5]  Michael P. Garrity Raytracing irregular volume data , 1990, VVS.

[6]  Philipp Slusallek,et al.  Interactive Volume Rendering with Ray Tracing , 2006, Eurographics.

[7]  Yuan Zhou,et al.  Interactive Point-Based Rendering of Higher-Order Tetrahedral Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[8]  Xiangmin Jiao,et al.  Compact Array-Based Mesh Data Structures , 2005, IMR.

[9]  Peter L. Williams Visibility-ordering meshed polyhedra , 1992, TOGS.

[10]  Lutz Kettner Designing a data structure for polyhedral surfaces , 1997 .

[11]  Thomas Ertl,et al.  Interactive High‐Quality Visualization of Higher‐Order Finite Elements , 2010, Comput. Graph. Forum.

[12]  Martin Kraus,et al.  Hardware-based ray casting for tetrahedral meshes , 2003, IEEE Visualization, 2003. VIS 2003..

[13]  Peter-Pike J. Sloan,et al.  Interactive Ray Tracing for Volume Visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[14]  Waldemar Celes Filho,et al.  High-Quality Hardware-Based Ray-Casting Volume Rendering Using Partial Pre-Integration , 2005, XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05).

[15]  Rüdiger Westermann,et al.  The Rendering of Unstructured Grids Revisited , 2001, VisSym.

[16]  Valerio Pascucci,et al.  Progressive Volume Rendering of Large Unstructured Grids , 2006, IEEE Transactions on Visualization and Computer Graphics.

[17]  Alan Heirich,et al.  iRun: Interactive Rendering of Large Unstructured Grids , 2006 .

[18]  Cláudio T. Silva,et al.  GPU-Based Tiled Ray Casting Using Depth Peeling , 2006, J. Graph. Tools.

[19]  H. Hagen,et al.  Interactive SIMD ray tracing for large deformable tetrahedral meshes , 2008, 2008 IEEE Symposium on Interactive Ray Tracing.

[20]  Jarek Rossignac,et al.  SOT: compact representation for tetrahedral meshes , 2009, Symposium on Solid and Physical Modeling.

[21]  Øyvind Andreassen,et al.  Visualization of vector fields using seed LIC and volume rendering , 2004, IEEE Transactions on Visualization and Computer Graphics.

[22]  Antonio A. F. Oliveira,et al.  Memory Efficient GPU-Based Ray Casting for Unstructured Volume Rendering , 2008, VG/PBG@SIGGRAPH.

[23]  Roberto Scopigno,et al.  Multiresolution volume visualization with a texture-based octree , 2001, The Visual Computer.

[24]  Cláudio T. Silva,et al.  Hardware-assisted visibility sorting for unstructured volume rendering , 2005, IEEE Transactions on Visualization and Computer Graphics.

[25]  Luiz Velho,et al.  CHF: A Scalable Topological Data Structure for Tetrahedral Meshes , 2005, XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'05).

[26]  Kevin Weiler,et al.  Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments , 1985, IEEE Computer Graphics and Applications.

[27]  Thomas Ertl,et al.  Hardware-based view-independent cell projection , 2002, VVS '02.

[28]  Bruce G. Baumgart A polyhedron representation for computer vision , 1899 .

[29]  Nelson L. Max,et al.  Sorting and hardware assisted rendering for volume visualization , 1994, VVS '94.

[30]  Martin Kraus,et al.  Cell-projection of cyclic meshes , 2001, Proceedings Visualization, 2001. VIS '01..

[31]  Cláudio T. Silva,et al.  Interactive rendering of large unstructured grids using dynamic level-of-detail , 2005, VIS 05. IEEE Visualization, 2005..

[32]  Bruce G. Baumgart A polyhedron representation for computer vision , 1975, AFIPS '75.

[33]  Kwan-Liu Ma,et al.  A Scalable, Hybrid Scheme for Volume Rendering Massive Data Sets y , 2022 .

[34]  Klaus Mueller,et al.  An Image-Based Modelling Approach To GPU-based Unstructured Grid Volume Rendering , 2006, VG@SIGGRAPH.

[35]  Hans Hagen,et al.  Visual analysis and exploration of fluid flow in a cooling jacket , 2005, VIS 05. IEEE Visualization, 2005..

[36]  Rüdiger Westermann,et al.  Level-of-detail volume rendering via 3D textures , 2000, VVS.

[37]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[38]  Philipp Slusallek,et al.  Fast Ray Traversal of Tetrahedral and Hexahedral Meshes for Direct Volume Rendering , 2006, EuroVis.

[39]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[40]  Peter Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, SIGGRAPH 1990.

[41]  Joseph S. B. Mitchell,et al.  An exact interactive time visibility ordering algorithm for polyhedral cell complexes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[42]  Nelson L. Max,et al.  Volume rendering for curvilinear and unstructured grids , 2003, Proceedings Computer Graphics International 2003.

[43]  Thomas Ertl,et al.  Texture-encoded tetrahedral strips , 2004 .

[44]  Markus Hadwiger,et al.  Scalable Hybrid Unstructured and Structured Grid Raycasting , 2007, IEEE Transactions on Visualization and Computer Graphics.

[45]  Guillaume Caumon,et al.  Circular incident edge lists: a data structure for rendering complex unstructured grids , 2001, Proceedings Visualization, 2001. VIS '01..