Synthesis and characterization of dicobalthexacarbonyl-alkyne derivatives of amino acids, peptides, and peptide nucleic acid (PNA) monomers.

The reaction of Co(2)(CO)(8) with alkyne-containing amino acids [1a: phenylalanine (Phe) and 1b: methionine (Met)], two suitably alkyne-functionalized derivatives of the neuropeptide enkephalin (Enk) [3: Ac-Enk-Prop and 5: Ac-Enk(Pgl)-NH(2) (Ac--Acetyl; Pgl--propargylglycine; Prop--propargylamine)], a thymine Peptide Nucleic Acid (T-PNA) monomer (7), and a PNA-like monomer (9) derivative gave the respective dicobalthexacarbonyl bioconjugates in very good yields. Two different sites for labeling of the biomolecules were successfully used: The organometallic moiety was reacted with the C-terminus of alkyne-containing amino acids, peptide or PNA thymine monomers, and alternatively the organometallic compound was complexed to an internal site in the peptide or PNA. To this end, a simple glycine was replaced by propargylglycine in peptides, and a new alkyne-containing PNA-like monomer, in which an alkyne chain replaces the nucleobase, was used for PNA chemistry. For the synthesis of the two alkyne-containing enkephalin derivatives 3 and 5, two different resins, namely sulfamylbutyryl and Rink amid, were used as they allow to selectively insert, on the solid phase, an alkyne moiety at the C-terminus and on a side-chain of a peptide sequence, respectively. The identity and constitution of all cobalt complexes were confirmed by different analytical methods (IR, FAB, ESI-MS, and NMR). Most notably, IR spectroscopy shows intensive bands in the 2100-2000 cm(-1) region because of the Co(2)(CO)(6) moiety. In both (1)H NMR spectra of the dicobalthexacarbonyl PNA monomer derivatives 8 and 10, all signals are doubled because of the cis-trans isomerism about the central amide bond. The X-ray structure of a dicobalthexacarbonyl phenylalanine derivative (2a) confirms the proposed composition of the bioconjugates and shows that, as anticipated, the alkyne group of 2a is no longer linear upon complexation in comparison to the alkyne group of the bioconjugate precursor 1a, as indicated by a C-C[triple bond]C angle of about 143 degrees in 2a. Moreover, the C[triple bond]C bond of 1a was elongated by about 0.15 A upon Co(2) coordination.

[1]  K. Merz,et al.  Ruthenium-based bioconjugates: Synthesis and X-ray structure of the mixed ligand sandwich compound RuCpiPr(p-(CO2H)C6H4Tp) and labelling of amino acids and the neuropeptide enkephalin , 2009 .

[2]  Christian G Hartinger,et al.  Bioorganometallic chemistry--from teaching paradigms to medicinal applications. , 2009, Chemical Society reviews.

[3]  Anna F. A. Peacock,et al.  Medicinal organometallic chemistry: designing metal arene complexes as anticancer agents. , 2008, Chemistry, an Asian journal.

[4]  G. Gasser,et al.  Spectroscopic and Electrochemical Studies of Ferrocenyl Triazole Amino Acid and Peptide Bioconjugates Synthesized by Click Chemistry , 2008 .

[5]  G. Gasser,et al.  Synthesis of organometallic PNA oligomers by click chemistry. , 2008, Chemical communications.

[6]  N. Metzler‐Nolte,et al.  The Synthesis of Ruthenium and Rhodium Complexes with Functionalized N‐Heterocyclic Carbenes and Their Use in Solid Phase Peptide Synthesis , 2008 .

[7]  B. König,et al.  The Use of Solid‐Phase Synthesis Techniques for the Preparation of Peptide–Metal Complex Conjugates , 2008 .

[8]  M. Neukamm,et al.  Synthesis and cytotoxicity of a cobaltcarbonyl-alkyne enkephalin bioconjugate. , 2008, Chemical communications.

[9]  R. Gust,et al.  Metallo-nucleosides: synthesis and biological evaluation of hexacarbonyl dicobalt 5-alkynyl-2'-deoxyuridines. , 2008, Organic & biomolecular chemistry.

[10]  N. Metzler‐Nolte Medicinal Applications of Metal-Peptide Bioconjugates , 2007 .

[11]  N. Metzler‐Nolte,et al.  Labeling of the neuropeptide enkephalin with functionalized tris(pyrazolyl)borate complexes: solid-phase synthesis and characterization of p-[Enk-OH]COC6H4TpPtMe3 and p-[Enk-OH]COC6H4TpMeRe(CO)3. , 2007, Inorganic chemistry.

[12]  Eric Meggers,et al.  Exploring biologically relevant chemical space with metal complexes. , 2007, Current opinion in chemical biology.

[13]  N. Metzler‐Nolte,et al.  Introduction of Phosphine-Gold(I) Precursors into a Cys-modified Enkephalin Neuropeptide as Part of Solid Phase Peptide Synthesis , 2007 .

[14]  H. Kraatz,et al.  Systematizing structural motifs and nomenclature in 1,n'-disubstituted ferrocene peptides. , 2006, Chemical Society reviews.

[15]  N. Metzler‐Nolte,et al.  New principles in medicinal organometallic chemistry. , 2006, Angewandte Chemie.

[16]  P. Sadler,et al.  Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. , 2005, Chemical communications.

[17]  H. Kraatz,et al.  Synthesis and Electrochemical Characterization of Metallocene–PNA Oligomers , 2005 .

[18]  D. Steinhilber,et al.  Synthesis, cytotoxicity, cellular uptake and influence on eicosanoid metabolism of cobalt-alkyne modified fructoses in comparison to auranofin and the cytotoxic COX inhibitor Co-ASS. , 2005, Organic & biomolecular chemistry.

[19]  N. Metzler‐Nolte,et al.  Bioorganometallic chemistry of ferrocene. , 2004, Chemical reviews.

[20]  K. Nicholas,et al.  Stereoselective Pinacol Coupling of (Propargyl aldehyde)Co2(CO)6 Complexes , 2003 .

[21]  R. Foresti,et al.  Metal carbonyls: a new class of pharmaceuticals? , 2003, Angewandte Chemie.

[22]  D. Osella,et al.  The Hexacarbonyl(ethyne)dicobalt Unit: An Androgen Tag , 2002 .

[23]  T. Curran,et al.  pi-Ligands for generating transition metal-peptide complexes: coordination of amino acid derivatives to tungsten utilizing alkyne ligands. , 2002, Organic letters.

[24]  H. Fiebig,et al.  Comparative action of cobalt carbonyl complexes on cancer cells using human tumor xenografts. , 2002, Anticancer research.

[25]  N. Metzler‐Nolte,et al.  Labelling of [Leu5]-enkephalin with organometallic Mo complexes by solid-phase synthesis. , 2002, Chemical communications.

[26]  N. Metzler‐Nolte,et al.  Labeling of Biomolecules for Medicinal Applications — Bioorganometallic Chemistry at Its Best , 2001 .

[27]  G. A. van der Marel,et al.  Transition metal derivatives of peptide nucleic acid (PNA) oligomers-synthesis, characterization, and DNA binding. , 2000, Bioconjugate chemistry.

[28]  R. Gust,et al.  Acetylenehexacarbonyldicobalt complexes, a novel class of antitumor drugs , 2000 .

[29]  N. Metzler‐Nolte,et al.  A Two‐Step Palladium‐Catalyzed Coupling Scheme for the Synthesis of Ferrocene‐Labeled Amino Acids , 2000 .

[30]  A. Vessières,et al.  Carbonyl metallo immuno assay: a new application for Fourier transform infrared spectroscopy. , 1999, Journal of pharmaceutical and biomedical analysis.

[31]  A. Varenne,et al.  A new application of bioorganometallics: the first simultaneous triple assay by the carbonylmetalloimmunoassay (CMIA) method , 1999 .

[32]  N. Metzler‐Nolte,et al.  Synthesis of Alkynyl Amino Acids and Peptides and Their Palladium-Catalyzed Coupling to Ferrocene , 1999 .

[33]  B. J. Backes,et al.  An Alkanesulfonamide “Safety-Catch” Linker for Solid-Phase Synthesis , 1999 .

[34]  K. Severin,et al.  Bioorganometallic Chemistry - Transition Metal Complexes with α-Amino Acids and Peptides. , 1998, Angewandte Chemie.

[35]  B. J. Backes,et al.  Activation Method to Prepare a Highly Reactive Acylsulfonamide “Safety-Catch” Linker for Solid-Phase Synthesis1 , 1996 .

[36]  Jonathan A. Ellman,et al.  Carbon-Carbon Bond-Forming Methods on Solid Support. Utilization of Kenner's "Safety-Catch" Linker , 1994 .

[37]  A. Vessières,et al.  Synthesis of cobalt carbonyl complexes of cortisol and testosterone. Study of their recognition by specific polyclonal antibodies. , 1993, Bioconjugate chemistry.

[38]  N. Sewald,et al.  α-Trifluoromethyl substituted α-aminoacids and α-hydroxyacids with organometallic moieties in the side chain [1,2]† , 1993 .

[39]  A. Varenne,et al.  Transition metal carbonyl labeling of proteins. A novel approach to a solid-phase two-site immunoassay using Fourier transform infrared spectroscopy. , 1992, Bioconjugate chemistry.

[40]  D. Osella,et al.  Estradiols Modified by Metal Carbonyl Clusters as Suicide Substrates for the Study of Receptor Proteins: Application to the Estradiol Receptor , 1992 .

[41]  M. Egholm,et al.  Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. , 1991, Science.

[42]  A. Vessières,et al.  Fourier transform infrared spectroscopic method for the quantitative trace analysis of transition-metal carbonyl-labeled bioligands. , 1991, Analytical chemistry.

[43]  G. Teutsch,et al.  Transition-metal carbonyl complexes in progesterone receptor assay , 1988 .

[44]  A. Vessières,et al.  Transition-metal carbonyl clusters as novel infrared markers for estradiol receptor site detection , 1987 .

[45]  C. Catlow,et al.  The structure of LaF3– a single‐crystal neutron diffraction study at room temperature , 1983 .

[46]  H. Flack,et al.  On enantiomorph‐polarity estimation , 1983 .

[47]  D. Seyferth,et al.  Organocobalt cluster complexes. XVIII. Friedel-Crafts acylation of diarylacetylenedicobalt hexacarbonyl complexes. Dicobalt hexacarbonyl unit as a protecting group for the acetylene function , 1975 .

[48]  W. König,et al.  [Racemization in peptide syntheses]. , 1970, Chemische Berichte.

[49]  G. Jaouen,et al.  Medicinal organometallic chemistry , 2010 .

[50]  D. Mingos,et al.  Comprehensive organometallic chemistry III , 2007 .

[51]  Walter Mier,et al.  Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates. , 2007 .

[52]  N. Metzler‐Nolte,et al.  Use of the Sonogashira coupling reaction for the "two-step" labeling of phenylalanine peptide side chains with organometallic compounds. , 2006, Bioconjugate chemistry.

[53]  C. S. Allardyce,et al.  Development of organometallic (organo‐transition metal) pharmaceuticals , 2005 .

[54]  N. Metzler‐Nolte,et al.  Transition metal labels on peptide nucleic acid (PNA) monomers , 1999 .

[55]  P. Senter,et al.  Bioorganometallic Chemistry – Synthesis and Antitumor Activity of Cobalt Carbonyl Complexes , 1997, Archiv der Pharmazie.

[56]  A. Vessières,et al.  Analytical potential of near‐infrared fourier transform Raman spectra in the detection of solid transition metal carbonyl steroid hormones , 1995 .

[57]  A. Vessières,et al.  Carbonylmetalloimmunoassay (CMIA) a new type of non-radioisotopic immunoassay. Principles and application to phenobarbital assay. , 1992, Journal of immunological methods.

[58]  G. Jaouen,et al.  An organometallic substitute for the radioactive Bolton–Hunter reagent , 1991 .

[59]  R. Sheppard,et al.  The safety catch principle in solid phase peptide synthesis , 1971 .

[60]  W. G. Sly The Molecular Configuration of Dicobalt Hexacarbonyl Diphenylacetylene , 1959 .