Rates of Convergence of Spectral Methods for Graphon Estimation

This paper studies the problem of estimating the grahpon model - the underlying generating mechanism of a network. Graphon estimation arises in many applications such as predicting missing links in networks and learning user preferences in recommender systems. The graphon model deals with a random graph of $n$ vertices such that each pair of two vertices $i$ and $j$ are connected independently with probability $\rho \times f(x_i,x_j)$, where $x_i$ is the unknown $d$-dimensional label of vertex $i$, $f$ is an unknown symmetric function, and $\rho$ is a scaling parameter characterizing the graph sparsity. Recent studies have identified the minimax error rate of estimating the graphon from a single realization of the random graph. However, there exists a wide gap between the known error rates of computationally efficient estimation procedures and the minimax optimal error rate. Here we analyze a spectral method, namely universal singular value thresholding (USVT) algorithm, in the relatively sparse regime with the average vertex degree $n\rho=\Omega(\log n)$. When $f$ belongs to Holder or Sobolev space with smoothness index $\alpha$, we show the error rate of USVT is at most $(n\rho)^{ -2 \alpha / (2\alpha+d)}$, approaching the minimax optimal error rate $\log (n\rho)/(n\rho)$ for $d=1$ as $\alpha$ increases. Furthermore, when $f$ is analytic, we show the error rate of USVT is at most $\log^d (n\rho)/(n\rho)$. In the special case of stochastic block model with $k$ blocks, the error rate of USVT is at most $k/(n\rho)$, which is larger than the minimax optimal error rate by at most a multiplicative factor $k/\log k$. This coincides with the computational gap observed for community detection. A key step of our analysis is to derive the eigenvalue decaying rate of the edge probability matrix using piecewise polynomial approximations of the graphon function $f$.

[1]  J. Reade,et al.  Eigenvalues of Analytic Kernels , 1984 .

[2]  Michael Ruzhansky,et al.  Schatten classes on compact manifolds: Kernel conditions☆ , 2014, 1403.6158.

[3]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .

[4]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[5]  Christian Borgs,et al.  Private Graphon Estimation for Sparse Graphs , 2015, NIPS.

[6]  G. Leoni A First Course in Sobolev Spaces , 2009 .

[7]  H. Komatsu A characterization of real analytic functions , 1960 .

[8]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[9]  Rebecca Willett,et al.  Matrix Completion Under Monotonic Single Index Models , 2015, NIPS.

[10]  C. Borgs,et al.  Consistent nonparametric estimation for heavy-tailed sparse graphs , 2015, The Annals of Statistics.

[11]  A. Raftery,et al.  Model‐based clustering for social networks , 2007 .

[12]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[13]  Bruce E. Hajek,et al.  Semidefinite Programs for Exact Recovery of a Hidden Community , 2016, COLT.

[14]  Martin J. Wainwright,et al.  Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues , 2015, IEEE Transactions on Information Theory.

[15]  Bruce E. Hajek,et al.  Achieving Exact Cluster Recovery Threshold via Semidefinite Programming , 2016, IEEE Trans. Inf. Theory.

[16]  Cristopher Moore,et al.  The Computer Science and Physics of Community Detection: Landscapes, Phase Transitions, and Hardness , 2017, Bull. EATCS.

[17]  O. Klopp Rank penalized estimators for high-dimensional matrices , 2011, 1104.1244.

[18]  Jess Banks,et al.  Information-theoretic bounds and phase transitions in clustering, sparse PCA, and submatrix localization , 2016, 2017 IEEE International Symposium on Information Theory (ISIT).

[19]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[20]  M. Birman,et al.  ESTIMATES OF SINGULAR NUMBERS OF INTEGRAL OPERATORS , 1977 .

[21]  Yudong Chen,et al.  Statistical-Computational Tradeoffs in Planted Problems and Submatrix Localization with a Growing Number of Clusters and Submatrices , 2014, J. Mach. Learn. Res..

[22]  Devavrat Shah,et al.  Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation , 2017, NIPS.

[23]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[24]  Laurent Massoulié,et al.  Edge Label Inference in Generalized Stochastic Block Models: from Spectral Theory to Impossibility Results , 2014, COLT.

[25]  Harrison H. Zhou,et al.  Rate-optimal graphon estimation , 2014, 1410.5837.

[26]  Edoardo M. Airoldi,et al.  Nonparametric estimation and testing of exchangeable graph models , 2014, AISTATS.

[27]  A. Bandeira,et al.  Sharp nonasymptotic bounds on the norm of random matrices with independent entries , 2014, 1408.6185.

[28]  V. Sós,et al.  Convergent Sequences of Dense Graphs II. Multiway Cuts and Statistical Physics , 2012 .

[29]  Thomas L. Griffiths,et al.  Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.

[30]  Chao Gao,et al.  Optimal Estimation and Completion of Matrices with Biclustering Structures , 2016, J. Mach. Learn. Res..

[31]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[32]  Uriel Feige,et al.  Spectral techniques applied to sparse random graphs , 2005, Random Struct. Algorithms.

[33]  V. Koltchinskii Asymptotics of Spectral Projections of Some Random Matrices Approximating Integral Operators , 1998 .

[34]  Emmanuel Abbe,et al.  Detection in the stochastic block model with multiple clusters: proof of the achievability conjectures, acyclic BP, and the information-computation gap , 2015, ArXiv.

[35]  Jess Banks,et al.  Information-theoretic thresholds for community detection in sparse networks , 2016, COLT.

[36]  Edoardo M. Airoldi,et al.  A Consistent Histogram Estimator for Exchangeable Graph Models , 2014, ICML.

[37]  E. Levina,et al.  Estimating network edge probabilities by neighborhood smoothing , 2015, 1509.08588.

[38]  Laurent Massoulié,et al.  Distributed user profiling via spectral methods , 2010, SIGMETRICS '10.

[39]  Marianna Pensky,et al.  Dynamic network models and graphon estimation , 2016, The Annals of Statistics.

[40]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[41]  D. Shah,et al.  Unifying Framework for Crowd-sourcing via Graphon Estimation , 2017 .

[42]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[43]  Tosio Kato Perturbation theory for linear operators , 1966 .

[44]  A. Tsybakov,et al.  Oracle inequalities for network models and sparse graphon estimation , 2015, 1507.04118.

[45]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[46]  N. Verzelen,et al.  Optimal graphon estimation in cut distance , 2017, Probability Theory and Related Fields.

[47]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[48]  Ulrike von Luxburg,et al.  On the Convergence of Spectral Clustering on Random Samples: The Normalized Case , 2004, COLT.

[49]  Cameron E. Freer,et al.  An iterative step-function estimator for graphons , 2014, 1412.2129.

[50]  V. Koltchinskii,et al.  Random matrix approximation of spectra of integral operators , 2000 .

[51]  Benny Sudakov,et al.  The Largest Eigenvalue of Sparse Random Graphs , 2001, Combinatorics, Probability and Computing.

[52]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[53]  P. Wolfe,et al.  Nonparametric graphon estimation , 2013, 1309.5936.

[54]  Yihua Li,et al.  Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering , 2016, NIPS.

[55]  Edoardo M. Airoldi,et al.  Stochastic blockmodel approximation of a graphon: Theory and consistent estimation , 2013, NIPS.

[56]  Devavrat Shah,et al.  Reducing Crowdsourcing to Graphon Estimation, Statistically , 2017, AISTATS.