Evaluation of an anthropometric shape model of the human scalp.

This paper presents the evaluation a 3D shape model of the human head. A statistical shape model of the head is created from a set of 100 MRI scans. The ability of the shape model to predict new head shapes is evaluated by considering the prediction error distributions. The effect of using intuitive anthropometric measurements as parameters is examined and the sensitivity to measurement errors is determined. Using all anthropometric measurements, the average prediction error is 1.60 ± 0.36 mm, which shows the feasibility of the new parameters. The most sensitive measurement is the ear height, the least sensitive is the arc length. Finally, two applications of the anthropometric shape model are considered: the study of the male and female population and the design of a brain-computer interface headset. The results show that an anthropometric shape model can be a valuable tool for both research and design.

[1]  Anton Nijholt,et al.  Towards Practical Brain-Computer Interfaces: Bridging the Gap from Research to Real-World Applications , 2012 .

[2]  Chang Shu,et al.  Revealing the internal structure of human variability for design purposes , 2009 .

[3]  Stacey M Benson,et al.  Facial anthropometric differences among gender, ethnicity, and age groups. , 2010, The Annals of occupational hygiene.

[4]  F Cincotti,et al.  Current trends in hardware and software for brain–computer interfaces (BCIs) , 2011, Journal of neural engineering.

[5]  Charlie C. L. Wang,et al.  Exemplar-based statistical model for semantic parametric design of human body , 2010, Comput. Ind..

[6]  Roger Ball,et al.  3-D Design Tools from the SizeChina Project , 2009 .

[7]  J Olaso,et al.  A multidimensional approach to the generation of helmets' design criteria: a preliminar study. , 2012, Work.

[8]  Stijn Verwulgen,et al.  Physical Evaluation of an Anthropometric Shape Model of the Human Scalp , 2015 .

[9]  Mao-Jiun J. Wang,et al.  Constructing 3D human model from front and side images , 2012, Expert Syst. Appl..

[10]  Jan Sijbers,et al.  Automatic Construction of Correspondences for Tubular Surfaces , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[12]  H. Grebe Rudolf Martin - Karl Saller: Lehrbuch der Anthropologie in systematischer Darstellung . 3. Aufl. 1. + 2. Lieferung Subskriptionspreis D.M. 21, 271 S., broschiert, Gustav Fischer- Verlag, 1956. , 1957 .

[13]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[14]  Chang Shu,et al.  Consistent parameterization and statistical analysis of human head scans , 2009, The Visual Computer.

[15]  Frank T. Piller,et al.  Mass Customization: Reflections on the State of the Concept , 2004 .

[16]  Gene H. Golub,et al.  Matrix computations , 1983 .

[17]  Kunwoo Lee,et al.  Parametric human body shape modeling framework for human-centered product design , 2012, Comput. Aided Des..

[18]  Chang Shu,et al.  Geometry Processing and Statistical Shape Analysis of 3-D Anthropometry Data , 2009 .

[19]  Nadia Magnenat-Thalmann,et al.  Automatic modeling of virtual humans and body clothing , 2004, Journal of Computer Science and Technology.

[20]  Osamu Sakai,et al.  CT measurement of the frontal sinus - gender differences and implications for frontal cranioplasty. , 2010, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[21]  Gerald L. Lohse,et al.  Predictors of online buying behavior , 1999, CACM.

[22]  Hanan Samet,et al.  A general approach to connected-component labeling for arbitrary image representations , 1992, JACM.

[23]  Charlie C. L. Wang,et al.  Parameterization and parametric design of mannequins , 2005, Comput. Aided Des..

[24]  Jan Sijbers,et al.  Bias field reduction by localized Lloyd-Max quantization. , 2011, Magnetic resonance imaging.

[25]  M Kouchi,et al.  Interobserver errors in anthropometry. , 1999, Journal of human ergology.

[26]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[27]  S. Arridge,et al.  Sources of intensity nonuniformity in spin echo images at 1.5 T , 1994, Magnetic resonance in medicine.

[28]  Jan Sijbers,et al.  An anthropometric shape model for the design of sports helmets , 2014 .

[29]  Yuan Cheng,et al.  Automatic identification of Frankfurt plane and mid-sagittal plane of skull , 2012, 2012 IEEE Workshop on the Applications of Computer Vision (WACV).

[30]  Thomas Vetter,et al.  A morphable model for the synthesis of 3D faces , 1999, SIGGRAPH.

[31]  J C Gore,et al.  Contrast mechanisms in magnetic resonance imaging , 2004 .

[32]  Robert Oostenveld,et al.  The five percent electrode system for high-resolution EEG and ERP measurements , 2001, Clinical Neurophysiology.

[33]  Chih-Hsing Chu,et al.  Design customization of respiratory mask based on 3D face anthropometric data , 2015 .

[34]  M. Rioux,et al.  A comparison between Chinese and Caucasian head shapes. , 2010, Applied ergonomics.

[35]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[36]  Chang Shu,et al.  Head-and-face shape variations of U.S. civilian workers. , 2013, Applied ergonomics.

[37]  Rudolf Martin,et al.  Lehrbuch der Anthropologie in systematischer Darstellung, mit besonderer Berücksichtigung der anthropologischen Methoden für Studierende, Ärzte und Forschungsreisende. Iéna : Fischer, 1914, p. 34-43 , 2022, Photographica.

[38]  P Meunier,et al.  Helmet accommodation analysis using 3D laser scanning. , 2000, Applied ergonomics.

[39]  Sergio Silvestri,et al.  Biological effects of exposure to magnetic resonance imaging: an overview , 2004, Biomedical engineering online.

[40]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. Anibor,et al.  A study of craniofacial parameters and total body height , 2011 .

[42]  Chang Shu,et al.  Estimating 3D human shapes from measurements , 2012, Machine Vision and Applications.

[43]  Gavriel Salvendy,et al.  Multi-resolution description of three-dimensional anthropometric data for design simplification. , 2009, Applied ergonomics.

[44]  Masaaki Mochimaru,et al.  Errors in landmarking and the evaluation of the accuracy of traditional and 3D anthropometry. , 2011, Applied ergonomics.

[45]  A Yu,et al.  2D and 3D anatomical analyses of hand dimensions for custom-made gloves. , 2013, Applied ergonomics.