Blind spots in global soil biodiversity and ecosystem function research

[1]  Dominique Gravel,et al.  Key Questions for Next-Generation Biomonitoring , 2020, Frontiers in Environmental Science.

[2]  F. Maestre,et al.  Recommendations for establishing global collaborative networks in soil ecology. , 2019, Soil organisms.

[3]  M. Delgado‐Baquerizo,et al.  Cross-Biome Drivers of Soil Bacterial Alpha Diversity on a Worldwide Scale , 2019, Ecosystems.

[4]  B. Jones,et al.  Microbiomics of Namib Desert habitats , 2019, Extremophiles.

[5]  Diana H. Wall,et al.  Soil nematode abundance and functional group composition at a global scale , 2019, Nature.

[6]  C. Guerra,et al.  Global mismatches in aboveground and belowground biodiversity , 2019, Conservation biology : the journal of the Society for Conservation Biology.

[7]  Birgitta König-Ries,et al.  Global distribution of earthworm diversity , 2019, Science.

[8]  N. Eisenhauer,et al.  Recognizing the quiet extinction of invertebrates , 2019, Nature Communications.

[9]  B. Singh,et al.  Ant colonies promote the diversity of soil microbial communities , 2019, The ISME Journal.

[10]  R. Stouffer,et al.  Change in future climate due to Antarctic meltwater , 2018, Nature.

[11]  T. Rangel,et al.  Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness , 2018, Nature Communications.

[12]  S. Saha,et al.  Barriers in Bangladesh , 2018, eLife.

[13]  M. Schütz,et al.  Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions , 2018, Nature Communications.

[14]  J. Bever,et al.  Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns , 2018, Mycorrhiza.

[15]  J. Bever,et al.  Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns , 2018, Mycorrhiza.

[16]  Nadejda A. Soudzilovskaia,et al.  Multiple facets of biodiversity drive the diversity–stability relationship , 2018, Nature Ecology & Evolution.

[17]  Falk Hildebrand,et al.  Structure and function of the global topsoil microbiome , 2018, Nature.

[18]  C. Wirth,et al.  Biodiversity across trophic levels drives multifunctionality in highly diverse forests , 2018, Nature Communications.

[19]  Ying Zhao,et al.  Development and analysis of the Soil Water Infiltration Global database , 2018, Earth System Science Data.

[20]  J. Mathieu EGrowth: A global database on intraspecific body growth variability in earthworm , 2018, Soil Biology and Biochemistry.

[21]  Qingkui Wang,et al.  Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems , 2018, Global change biology.

[22]  Peter H. Raven,et al.  When the cure kills—CBD limits biodiversity research , 2018, Science.

[23]  M. Pärtel,et al.  Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities , 2018, The ISME Journal.

[24]  C. Orme,et al.  Environment and host as large-scale controls of ectomycorrhizal fungi , 2018, Nature.

[25]  J. McNamara,et al.  Brazil's government attacks biodiversity , 2018, Science.

[26]  P. Hunter A DEAL for open access , 2018, EMBO reports.

[27]  Erin K. Cameron,et al.  Global gaps in soil biodiversity data , 2018, Nature Ecology & Evolution.

[28]  Peter Haase,et al.  Unlocking biodiversity data: Prioritization and filling the gaps in biodiversity observation data in Europe , 2018 .

[29]  E. Kieff,et al.  Author Correction: Ephrin receptor A2 is an epithelial cell receptor for Epstein–Barr virus entry , 2018, Nature Microbiology.

[30]  K. Larsen,et al.  Early stage litter decomposition across biomes. , 2018, The Science of the total environment.

[31]  Han Y. H. Chen,et al.  Global negative effects of nitrogen deposition on soil microbes , 2018, The ISME Journal.

[32]  D. Chadwick,et al.  Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. , 2018, The Science of the total environment.

[33]  B. Singh,et al.  Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. , 2018, Ecology.

[34]  Alastair Culham,et al.  Taxonomy based on science is necessary for global conservation , 2018, PLoS biology.

[35]  G. Mace,et al.  Redefining ecosystem multifunctionality , 2018, Nature Ecology & Evolution.

[36]  N. Fierer,et al.  A global atlas of the dominant bacteria found in soil , 2018, Science.

[37]  C. Nock,et al.  Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. , 2017, Ecology letters.

[38]  S. Watmough,et al.  Forest Fertilization Associated with Oil Sands Emissions , 2018, Ecosystems.

[39]  C. Häuser,et al.  Global biodiversity research tied up by juridical interpretations of access and benefit sharing , 2018, Organisms Diversity & Evolution.

[40]  T. Crowther,et al.  Detecting macroecological patterns in bacterial communities across independent studies of global soils , 2018, Nature Microbiology.

[41]  Daniel S. Falster,et al.  Corrigendum: The Coral Trait Database, a curated database of trait information for coral species from the global oceans , 2017, Scientific Data.

[42]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[43]  Dominique Arrouays,et al.  Mapping and predictive variations of soil bacterial richness across France , 2017, PloS one.

[44]  H. de Kroon,et al.  More than 75 percent decline over 27 years in total flying insect biomass in protected areas , 2017, PloS one.

[45]  M. Rillig,et al.  Soil biota contributions to soil aggregation , 2017, Nature Ecology & Evolution.

[46]  O. Eriksson,et al.  Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. , 2017, The New phytologist.

[47]  J. Mathieu,et al.  Methods for studying earthworm dispersal , 2017 .

[48]  J. Overmann,et al.  Present and Future of Culturing Bacteria. , 2017, Annual review of microbiology.

[49]  Anton Güntsch,et al.  The Biodiversity Informatics Landscape: Elements, Connections and Opportunities , 2017 .

[50]  Anders F. Andersson,et al.  Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing , 2017, Front. Microbiol..

[51]  N. Fierer,et al.  Palaeoclimate explains a unique proportion of the global variation in soil bacterial communities , 2017, Nature Ecology & Evolution.

[52]  Ruth A. Howison,et al.  Biotically driven vegetation mosaics in grazing ecosystems: The battle between bioturbation and biocompaction , 2017 .

[53]  Bradley J. Cardinale,et al.  Biodiversity effects in the wild are common and as strong as key drivers of productivity , 2017, Nature.

[54]  B. Griffiths,et al.  Priorities for research in soil ecology. , 2017, Pedobiologia.

[55]  A. Classen,et al.  Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. , 2017, Ecology.

[56]  P. Hirsch,et al.  Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific Acid phosphatase Gene diversity and abundance , 2017, Plant and Soil.

[57]  Kaiwen Pan,et al.  Large-scale patterns of distribution and diversity of terrestrial nematodes , 2017 .

[58]  Susanna Paleari Is the European Union protecting soil? A critical analysis of Community environmental policy and law , 2017 .

[59]  J. Watts,et al.  The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale , 2017, Global change biology.

[60]  Neil D. Burgess,et al.  An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm , 2017, Bioscience.

[61]  J. Lennon,et al.  A macroecological theory of microbial biodiversity , 2017, Nature Ecology &Evolution.

[62]  M. Winter,et al.  Red list of a black box , 2017, Nature Ecology &Evolution.

[63]  A. Gove,et al.  A global database of ant species abundances. , 2017, Ecology.

[64]  N. Pauchard Access and Benefit Sharing under the Convention on Biological Diversity and Its Protocol: What Can Some Numbers Tell Us about the Effectiveness of the Regulatory Regime? , 2017 .

[65]  Jörg Overmann,et al.  Microbiological Research Under the Nagoya Protocol: Facts and Fiction. , 2017, Trends in microbiology.

[66]  Salvador Mandujano,et al.  The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project , 2016, Ecology and evolution.

[67]  Olaf Conrad,et al.  Climatologies at high resolution for the earth’s land surface areas , 2016, Scientific Data.

[68]  Whendee L. Silver,et al.  Global patterns in root decomposition: comparisons of climate and litter quality effects , 2001, Oecologia.

[69]  B. Guénard,et al.  The Global Ant Biodiversity Informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae) , 2017 .

[70]  P. Kyle,et al.  Land-use futures in the shared socio-economic pathways , 2017 .

[71]  S. Scheu,et al.  The tropics as an ancient cradle of oribatid mite diversity , 2016 .

[72]  A. Sugden Global biodiversity and productivity , 2016 .

[73]  Filippo Bussotti,et al.  Positive biodiversity-productivity relationship predominant in global forests , 2016, Science.

[74]  R. Prăvălie Drylands extent and environmental issues. A global approach , 2016 .

[75]  Ming Xu,et al.  Contribution of soil respiration to the global carbon equation. , 2016, Journal of plant physiology.

[76]  M. Schloter,et al.  Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality , 2016, Nature.

[77]  Carsten Meyer,et al.  Multidimensional biases, gaps and uncertainties in global plant occurrence information. , 2016, Ecology letters.

[78]  Martiny,et al.  Global biogeography of microbial nitrogen-cycling traits in soil , 2016 .

[79]  J. A. Bennett,et al.  Macroecology of biodiversity: disentangling local and regional effects. , 2016, The New phytologist.

[80]  Wolfgang Cramer,et al.  Biodiversity scenarios neglect future land‐use changes , 2016, Global change biology.

[81]  Philippe C. Baveye,et al.  Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground , 2016, Front. Environ. Sci..

[82]  J. Lennon,et al.  Scaling laws predict global microbial diversity , 2016, Proceedings of the National Academy of Sciences.

[83]  D. Moorhead,et al.  Stoichiometry of microbial carbon use efficiency in soils , 2016 .

[84]  B. Muys,et al.  Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests , 2016, Nature Communications.

[85]  E. Lara,et al.  Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae , 2016 .

[86]  Peter B Reich,et al.  Microbial diversity drives multifunctionality in terrestrial ecosystems , 2016, Nature Communications.

[87]  Ellen I. Damschen,et al.  Integrative modelling reveals mechanisms linking productivity and plant species richness , 2016, Nature.

[88]  J. Six,et al.  Global soil biodiversity atlas , 2016 .

[89]  D. Zwart,et al.  Mapping earthworm communities in Europe , 2016 .

[90]  W. Ulrich,et al.  Increasing aridity reduces soil microbial diversity and abundance in global drylands , 2015, Proceedings of the National Academy of Sciences.

[91]  T. M. Bezemer,et al.  Biodiversity increases the resistance of ecosystem productivity to climate extremes , 2015, Nature.

[92]  Walter Jetz,et al.  Global priorities for an effective information basis of biodiversity distributions , 2015, Nature Communications.

[93]  M. Zobel,et al.  Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism , 2015, Science.

[94]  Noah Fierer,et al.  Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe , 2015, Proceedings of the National Academy of Sciences.

[95]  Anke Jentsch,et al.  Worldwide evidence of a unimodal relationship between productivity and plant species richness , 2015, Science.

[96]  J. Overmann Significance and future role of microbial resource centers. , 2015, Systematic and applied microbiology.

[97]  C. Engels,et al.  Plant diversity increases soil microbial activity and soil carbon storage , 2015, Nature Communications.

[98]  Ben Collen,et al.  Global effects of land use on local terrestrial biodiversity , 2015, Nature.

[99]  Boris Schröder,et al.  Biodiversity research: data without theory—theory without data , 2015, Front. Ecol. Evol..

[100]  Nico Eisenhauer,et al.  From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology , 2015 .

[101]  O. Paknia,et al.  Lack of well-maintained natural history collections and taxonomists in megadiverse developing countries hampers global biodiversity exploration , 2015, Organisms Diversity & Evolution.

[102]  J. Frouz,et al.  Intensive agriculture reduces soil biodiversity across Europe , 2015, Global change biology.

[103]  Antonio Bispo,et al.  Meta-barcoded evaluation of the ISO standard 11063 DNA extraction procedure to characterize soil bacterial and fungal community diversity and composition , 2014, Microbial biotechnology.

[104]  R. Henrik Nilsson,et al.  Global diversity and geography of soil fungi , 2014, Science.

[105]  Richard D. Bardgett,et al.  Belowground biodiversity and ecosystem functioning , 2014, Nature.

[106]  Zhenghua Hu,et al.  Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data , 2014 .

[107]  Diana H. Wall,et al.  Global‐scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties , 2014 .

[108]  G. Heuvelink,et al.  SoilGrids1km — Global Soil Information Based on Automated Mapping , 2014, PloS one.

[109]  R. Knight,et al.  The Earth Microbiome project: successes and aspirations , 2014, BMC Biology.

[110]  R. Dirzo,et al.  Defaunation in the Anthropocene , 2014, Science.

[111]  J. Cortet,et al.  Current use of and future needs for soil invertebrate functional traits in community ecology , 2014 .

[112]  Jonathan D. G. Jones,et al.  Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss , 2018 .

[113]  David T. Jones,et al.  First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences , 2014, Journal of Tropical Ecology.

[114]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[115]  Hongwei Li,et al.  RESEARCH ON GEOGRAPHICAL ENVIRONMENT UNIT DIVISION BASED ON THE METHOD OF NATURAL BREAKS (JENKS) , 2013 .

[116]  Noah Fierer,et al.  Global drivers and patterns of microbial abundance in soil , 2013 .

[117]  Mark Gahegan,et al.  Biodiversity data should be published, cited, and peer reviewed. , 2013, Trends in ecology & evolution.

[118]  L. Tedersoo,et al.  Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. , 2013, The New phytologist.

[119]  Tatsuya Amano,et al.  Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security , 2013, Proceedings of the Royal Society B: Biological Sciences.

[120]  M. Hodson,et al.  A review of earthworm impact on soil function and ecosystem services , 2013 .

[121]  A. Budden,et al.  Big data and the future of ecology , 2013 .

[122]  P. Reich,et al.  Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment , 2013, Proceedings of the National Academy of Sciences.

[123]  Scott T. Bates,et al.  Global biogeography of highly diverse protistan communities in soil , 2012, The ISME Journal.

[124]  Eppo PM 7/119 (1) Nematode extraction , 2013 .

[125]  A. Dai Increasing drought under global warming in observations and models , 2013 .

[126]  C. Tebaldi,et al.  Long-term Climate Change: Projections, Commitments and Irreversibility , 2013 .

[127]  A. Chao,et al.  Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. , 2012, Ecology.

[128]  Henrique M. Pereira,et al.  Global Biodiversity Change: The Bad, the Good, and the Unknown , 2012 .

[129]  T. Henkel,et al.  Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. , 2012, Molecular ecology.

[130]  G. Daily,et al.  Corrigendum: Biodiversity loss and its impact on humanity , 2012, Nature.

[131]  D. Six,et al.  Soil Ecology and Ecosystem Services , 2012 .

[132]  G. Daily,et al.  Biodiversity loss and its impact on humanity , 2012, Nature.

[133]  P. Reich,et al.  Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades , 2012, Science.

[134]  Jackson R. Webster,et al.  Past, Present, and Future Roles of Long-Term Experiments in the LTER Network , 2012 .

[135]  Xuewen Huang,et al.  Plant Species Richness and Ecosystem Multifunctionality in Global Drylands , 2012, Science.

[136]  Gavin McKellar,et al.  Are we losing it , 2012 .

[137]  Lisa Drew,et al.  Are We Losing the Science of Taxonomy? , 2011 .

[138]  K. Treseder,et al.  Global diversity and distribution of arbuscular mycorrhizal fungi , 2011 .

[139]  Edward Ayres,et al.  Molecular study of worldwide distribution and diversity of soil animals , 2011, Proceedings of the National Academy of Sciences.

[140]  S. K. Schmidt,et al.  Global Distribution of Polaromonas Phylotypes - Evidence for a Highly Successful Dispersal Capacity , 2011, PloS one.

[141]  Rob Knight,et al.  Examining the global distribution of dominant archaeal populations in soil , 2011, The ISME Journal.

[142]  Theodore A. Evans,et al.  Ants and termites increase crop yield in a dry climate , 2011, Nature communications.

[143]  Andrew P. Martin,et al.  Soil rotifer communities are extremely diverse globally but spatially autocorrelated locally , 2011, Proceedings of the National Academy of Sciences.

[144]  B. Hungate,et al.  A meta-analysis of responses of soil biota to global change , 2011, Oecologia.

[145]  K. D. Prathapan,et al.  Biodiversity access and benefit-sharing: weaving a rope of sand , 2011 .

[146]  D. Gesch,et al.  Global multi-resolution terrain elevation data 2010 (GMTED2010) , 2011 .

[147]  M. Lange,et al.  Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment , 2010, Nature.

[148]  P. Burkill,et al.  Ecosystem Services for 2020 , 2010, Science.

[149]  J Davison,et al.  The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). , 2010, The New phytologist.

[150]  R. D. Groot,et al.  Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making , 2010 .

[151]  D. Burslem,et al.  The Enigma of Soil Animal Species Diversity Revisited: The Role of Small-Scale Heterogeneity , 2010, PloS one.

[152]  A. Thomson,et al.  A global database of soil respiration data , 2010 .

[153]  Budiman Minasny,et al.  Homosoil, a Methodology for Quantitative Extrapolation of Soil Information Across the Globe , 2010 .

[154]  Gavin B. Stewart,et al.  Meta-analysis in applied ecology , 2010, Biology Letters.

[155]  M. Bradford,et al.  Global patterns in belowground communities. , 2009, Ecology letters.

[156]  W. Parton,et al.  Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent , 2008, Global Change Biology.

[157]  Antonio Trabucco,et al.  Climate change mitigation through afforestation/reforestation: A global analysis of hydrologic impacts with four case studies , 2008 .

[158]  Antonio Trabucco,et al.  Climate change mitigation: a spatial analysis of global land suitability for Clean Development Mechanism afforestation and reforestation , 2008 .

[159]  Yiqi Luo,et al.  Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors , 2008 .

[160]  A. Heinemeyer,et al.  Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta‐analysis approach , 2007 .

[161]  Noel Enyedy,et al.  Little science confronts the data deluge: habitat ecology, embedded sensor networks, and digital libraries , 2007, International Journal on Digital Libraries.

[162]  R. Knight,et al.  Global patterns in bacterial diversity , 2007, Proceedings of the National Academy of Sciences.

[163]  G. Hegerl,et al.  Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations , 2007 .

[164]  W. Jetz,et al.  Global patterns and determinants of vascular plant diversity , 2007, Proceedings of the National Academy of Sciences.

[165]  Sébastien Barot,et al.  Soil invertebrates and ecosystem services , 2006 .

[166]  A. Chao,et al.  A statistical approach to estimate soil ciliate diversity and distribution based on data from five continents , 2006 .

[167]  M. Zobel,et al.  Composition of root‐colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe , 2006 .

[168]  R. B. Jackson,et al.  The diversity and biogeography of soil bacterial communities. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[169]  Antonio Trabucco,et al.  Carbon, land and water: a global analysis of the hydrologic dimensions of climate change mitigation through afforestation / reforestation , 2006 .

[170]  Robin Sen,et al.  UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. , 2005, The New phytologist.

[171]  J. Koricheva,et al.  What determines the citation frequency of ecological papers? , 2005, Trends in ecology & evolution.

[172]  M. Loreau,et al.  Biodiversity Effects on Soil Processes Explained by Interspecific Functional Dissimilarity , 2004, Science.

[173]  D. Wardle,et al.  Ecological Linkages Between Aboveground and Belowground Biota , 2004, Science.

[174]  Yong Chen,et al.  Robust principal component analysis and outlier detection with ecological data , 2004 .

[175]  P. Raven,et al.  Taxonomy: Impediment or Expedient? , 2004, Science.

[176]  W. Foissner Global soil ciliate (Protozoa, Ciliophora) diversity: a probability-based approach using large sample collections from Africa, Australia and Antarctica , 1997, Biodiversity & Conservation.

[177]  S. Bamforth Interpreting soil ciliate biodiversity , 1995, Plant and Soil.

[178]  D. Jones,et al.  A global assessment using PCR techniques of mycorrhizal fungal populations colonising Tithonia diversifolia , 2004, Mycorrhiza.

[179]  J. Potts,et al.  A Rapid Microtiter Plate Method To Measure Carbon Dioxide Evolved from Carbon Substrate Amendments so as To Determine the Physiological Profiles of Soil Microbial Communities by Using Whole Soil , 2003, Applied and Environmental Microbiology.

[180]  G. Yohe,et al.  A globally coherent fingerprint of climate change impacts across natural systems , 2003, Nature.

[181]  K. J. Clarke,et al.  Biodiversity of terrestrial protozoa appears homogeneous across local and global spatial scales. , 2001, Protist.

[182]  P. Lavelle,et al.  Soil Ecology , 2001, Springer Netherlands.

[183]  J. Raich,et al.  Vegetation and soil respiration: Correlations and controls , 2000 .

[184]  D. Coleman,et al.  Fundamentals of Soil Ecology , 1996 .

[185]  E. Bååth,et al.  Microbial biomass measured as total lipid phosphate in soils of different organic content , 1991 .

[186]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .