A minimal model for two-component dark matter

A bstractWe propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

[1]  The minimal model of nonbaryonic dark matter: A singlet scalar , 2000, hep-ph/0011335.

[2]  M. Raidal,et al.  Impact of semi-annihilations on dark matter phenomenology - an example of Z_N symmetric scalar dark matter , 2012, 1202.2962.

[3]  Hiroshi Okada,et al.  Multicomponent dark matter particles in a two-loop neutrino model , 2013, 1303.7356.

[4]  L. Maccione,et al.  Constraints on particle dark matter from cosmic-ray antiprotons , 2013, 1312.3579.

[5]  J. Chiang,et al.  CONSTRAINTS ON THE GALACTIC HALO DARK MATTER FROM FERMI-LAT DIFFUSE MEASUREMENTS , 2010, 1205.6474.

[6]  Alessandro Strumia,et al.  Minimal Dark Matter , 2006 .

[7]  J. Zupan,et al.  Higgs portal, fermionic dark matter, and a Standard Model like Higgs at 125 GeV , 2012, 1203.2064.

[8]  Hiroshi Takano,et al.  Multi-Component Dark Matter Systems and Their Observation Prospects , 2012, 1207.3318.

[9]  M. Klasen,et al.  Detection prospects of singlet fermionic dark matter , 2013, 1308.0951.

[10]  K. Sigurdson,et al.  Can we discover multi-component WIMP dark matter? , 2009 .

[11]  R. Webb,et al.  First results from the LUX dark matter experiment at the Sanford underground research facility. , 2013, Physical review letters.

[12]  Riccardo Barbieri,et al.  Improved naturalness with a heavy Higgs boson: An alternative road to CERN LHC physics , 2006, hep-ph/0603188.

[13]  Detectability of a subdominant density component of cold dark matter , 2001, hep-ph/0102200.

[14]  Aleksandra Drozd,et al.  Two-component dark matter , 2013, 1309.2986.

[15]  Bin Zhu,et al.  Two Component Higgs-Portal Dark Matter , 2013, 1308.3851.

[16]  K. Sigurdson,et al.  Can we discover dual-component thermal WIMP dark matter? , 2009, 0907.4374.

[17]  A. Semenov,et al.  LanHEP - a package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.2 , 2014, 1412.5016.

[18]  A. Semenov,et al.  micrOMEGAs_3: A program for calculating dark matter observables , 2014, Comput. Phys. Commun..

[19]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[20]  M. Klasen,et al.  Warm and cold fermionic dark matter via freeze-in , 2013, 1309.2777.

[21]  Dark matter and collider phenomenology of universal extra dimensions , 2007, hep-ph/0701197.

[22]  M. Fairbairn,et al.  Singlet fermionic dark matter and the electroweak phase transition , 2013, 1305.3452.

[23]  H. Baer,et al.  Mixed axion/neutralino cold dark matter in supersymmetric models , 2011, 1103.5413.

[24]  E. Senaha,et al.  Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger , 2012, 1209.4163.

[25]  A. Arbey Supersymmetric Dark Matter and the LHC , 2013 .

[26]  E. Aprile,et al.  The XENON dark matter search experiment , 2004, 1206.6288.

[27]  S. Baek,et al.  Search for the Higgs portal to a singlet fermionic dark matter at the LHC , 2011, 1112.1847.

[28]  Gerard Jungman,et al.  Supersymmetric Dark Matter , 2000 .

[29]  Indirect detection of a subdominant density component of cold dark matter , 2002, hep-ph/0209266.

[30]  E Aprile,et al.  Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.

[31]  The XENON1T Dark Matter Search Experiment , 2019 .

[32]  C. Yaguna Gamma rays from the annihilation of singlet scalar dark matter. , 2008, 0810.4267.

[33]  Alexander Pukhov,et al.  $Z_3$ Scalar Singlet Dark Matter , 2012, 1211.1014.

[34]  L. Hall,et al.  Freeze-in production of FIMP dark matter , 2009, 0911.1120.

[35]  Y. Mambrini,et al.  Antimatter signals of singlet scalar dark matter , 2009, 0909.2799.

[36]  Gregory Peim,et al.  Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions , 2010, 1004.0649.

[37]  F. Ling,et al.  Scalar multiplet dark matter , 2009, 0903.4010.

[38]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[39]  Y. Mambrini Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC , 2011, 1108.0671.

[40]  Mcdonald Gauge singlet scalars as cold dark matter. , 1994, Physical review. D, Particles and fields.

[41]  C. Yaguna The singlet scalar as FIMP dark matter , 2011, 1105.1654.

[42]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[43]  L. Bergstrom,et al.  DarkSUSY: Computing Supersymmetric Dark Matter Properties Numerically , 2004 .