Reconfigurable Memristive Device Technologies

In this paper, we present a review of the state of the art in memristor technologies. Along with ionic conducting devices [i.e., conductive bridging random access memory (CBRAM)], we include phase change, and organic/organo-metallic technologies, and we review the most recent advances in oxide-based memristor technologies. We present progress on 3-D integration techniques, and we discuss the behavior of more mature memristive technologies in extreme environments.

[1]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[2]  L. Chua Memristor-The missing circuit element , 1971 .

[3]  D. Emin,et al.  Small-Polaron Hopping Motion in Some Chalcogenide Glasses , 1972 .

[4]  C. Popescu,et al.  The contribution of the lateral thermal instability to the switching phenomenon , 1972 .

[5]  R. Street,et al.  States in the Gap in Glassy Semiconductors , 1975 .

[6]  C. Popescu The effect of local non-uniformities on thermal switching and high field behaviour of structures with chalcogenide glasses , 1975 .

[7]  Y. Hirose,et al.  Polarity‐dependent memory switching and behavior of Ag dendrite in Ag‐photodoped amorphous As2S3 films , 1976 .

[8]  D. Adler,et al.  Valence-Alternation Model for Localized Gap States in Lone-Pair Semiconductors , 1976 .

[9]  Sir Nevill Mott,et al.  The mechanism of threshold switching in amorphous alloys , 1978 .

[10]  D. Adler,et al.  Threshold Switching in Chalcogenide-Glass Thin Films , 1980 .

[11]  W. Boer Threshold switching in hydrogenated amorphous silicon , 1982 .

[12]  K. Polasko,et al.  Silver diffusion in Ag2Se/GeSe2 inorganic resist system , 1986 .

[13]  J. Rennie,et al.  Investigations of the mechanism of photo-dissolution of silver in amorphous germanium chalcogenide thin films , 1987 .

[14]  G. Kluge,et al.  Silver photodiffusion in amorphous GexSe100−x , 1990 .

[15]  Y. Miyamoto,et al.  Mobility of Ag ions in AgAsS glasses , 1994 .

[16]  Ja’far,et al.  Switching in amorphous-silicon devices. , 1994, Physical review. B, Condensed matter.

[17]  J. H. Coombs,et al.  Laser‐induced crystallization phenomena in GeTe‐based alloys. I. Characterization of nucleation and growth , 1995 .

[18]  J. H. Coombs,et al.  Laser‐induced crystallization phenomena in GeTe‐based alloys. II. Composition dependence of nucleation and growth , 1995 .

[19]  P. Boolchand,et al.  Direct Evidence for Stiffness Threshold in Chalcogenide Glasses , 1997 .

[20]  P. Dressendorfer Basic mechanisms for the new millennium , 1998 .

[21]  P. Boolchand,et al.  Dual Chemical Role of Ag as an Additive in Chalcogenide Glasses , 1999 .

[22]  A. M. Sergent,et al.  Defect dominated charge transport in amorphous Ta2O5 thin films , 2000 .

[23]  S. Lai,et al.  OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[24]  J. P. Callan,et al.  Ultrafast laser-induced phase transitions in amorphous GeSb films. , 1998, Physical review letters.

[25]  M. Kozicki,et al.  Silver incorporation in Ge-Se glasses used in programmable metallization cell devices , 2002 .

[26]  Liping Ma,et al.  Organic electrical bistable devices and rewritable memory cells , 2002 .

[27]  S. Mamedov,et al.  Macroscopic phase separation of Se-rich ( x< 1/3) ternary Agy(GexSe1−x)1−y glasses , 2003 .

[28]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[29]  M. Kozicki,et al.  Flow regulation in microchannels via electrical alteration of surface properties , 2003 .

[30]  L. V. Pieterson,et al.  Te-free, Sb-based phase-change materials for high-speed rewritable optical recording , 2003 .

[31]  A. Pirovano,et al.  Electrothermal and phase-change dynamics in chalcogenide-based memories , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[32]  S. O. Park,et al.  Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[33]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[34]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[35]  Andrea L. Lacaita,et al.  Switching and programming dynamics in phase-change memory cells , 2005 .

[36]  R. Symanczyk,et al.  Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[37]  크리스티 에이. 캠프벨 Resistance variable memory device and method of fabrication , 2005 .

[38]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[39]  Michael N. Kozicki,et al.  A macro model of programmable metallization cell devices , 2005 .

[40]  M. Kozicki,et al.  Resistance-change devices based on solid electrolytes , 2006 .

[41]  D. Emin Current-driven threshold switching of a small polaron semiconductor to a metastable conductor , 2006 .

[42]  U. Böttger,et al.  Preparation and characterisation of amorphous Cu:7,7,8,8-Tetracyanoquinodimethane thin films with low surface roughness via thermal co-deposition , 2006 .

[43]  M. Kozicki,et al.  Mass transport in chalcogenide electrolyte films - materials and applications , 2006 .

[44]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[45]  Kristy A. Campbell,et al.  Phase-change memory devices with stacked Ge-chalcogenide/Sn-chalcogenide layers , 2007, Microelectron. J..

[46]  Fredrik Jakobsson,et al.  On the switching mechanism in Rose Bengal-based memory devices , 2007 .

[47]  S. Menzel,et al.  Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems , 2007 .

[48]  N.E. Gilbert,et al.  An Embeddable Multilevel-Cell Solid Electrolyte Memory Array , 2007, IEEE Journal of Solid-State Circuits.

[49]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[50]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[51]  K. Aratani,et al.  A Novel Resistance Memory with High Scalability and Nanosecond Switching , 2007, 2007 IEEE International Electron Devices Meeting.

[52]  H. Hwang,et al.  Resistance switching of copper doped MoOx films for nonvolatile memory applications , 2007 .

[53]  R. Symanczyk,et al.  Conductive Bridging Memory Development from Single Cells to 2Mbit Memory Arrays , 2007, 2007 Non-Volatile Memory Technology Symposium.

[54]  J. Jameson,et al.  Bipolar resistive switching in polycrystalline TiO2 films , 2007 .

[55]  P. Schrogmeier,et al.  Time Discrete Voltage Sensing and Iterative Programming Control for a 4F2 Multilevel CBRAM , 2007, 2007 IEEE Symposium on VLSI Circuits.

[56]  T. Hasegawa,et al.  Electronic transport in Ta2O5 resistive switch , 2007 .

[57]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[58]  B. Gleixner,et al.  Data Retention Characterization of Phase-Change Memory Arrays , 2007, 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual.

[59]  R. Shelby,et al.  Phase change materials and their application to random access memory technology , 2008 .

[60]  N. Xu,et al.  Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories , 2008 .

[61]  M. Kozicki,et al.  In situ tuning of omnidirectional microelectromechanical-systems microphones to improve performance fit in hearing aids , 2008 .

[62]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[63]  M. Kozicki,et al.  Low current resistive switching in Cu–SiO2 cells , 2008 .

[64]  K. Terabe,et al.  Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch , 2008, IEEE Transactions on Electron Devices.

[65]  F. Ottogalli,et al.  Total Ionizing Dose Effects on 4 Mbit Phase Change Memory Arrays , 2008, IEEE Transactions on Nuclear Science.

[66]  Yihong Wu,et al.  Fast phase transitions induced by picosecond electrical pulses on phase change memory cells , 2008 .

[67]  R. Meyer,et al.  Oxide dual-layer memory element for scalable non-volatile cross-point memory technology , 2008, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[68]  Richard Q. Lee,et al.  A novel nanoionics-based switch for microwave applications , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[69]  A. Pirovano,et al.  Threshold switching and phase transition numerical models for phase change memory simulations , 2008 .

[70]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[71]  F. Zhuge,et al.  Nonvolatile resistive switching in graphene oxide thin films , 2009 .

[72]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[73]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[74]  R. Bruchhaus,et al.  Investigation of the Reliability Behavior of Conductive-Bridging Memory Cells , 2009, IEEE Electron Device Letters.

[75]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[76]  R. Waser,et al.  Integration of GexSe1-x in crossbar arrays for non-volatile memory applications , 2009 .

[77]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[78]  D. Ielmini,et al.  Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices , 2009, IEEE Transactions on Electron Devices.

[79]  Qi Liu,et al.  Improvement of resistive switching properties in ZrO2- based ReRAM with implanted metal ions , 2009, 2009 Proceedings of the European Solid State Device Research Conference.

[80]  R. Waser,et al.  Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories , 2009 .

[81]  R. Waser,et al.  A Nonvolatile Memory With Resistively Switching Methyl-Silsesquioxane , 2009, IEEE Electron Device Letters.

[82]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[83]  A. Edwards,et al.  Density functional study of Ag in Ge2Se3 , 2009, 2009 10th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[84]  R. Rosezin,et al.  High density 3D memory architecture based on the resistive switching effect , 2009 .

[85]  D. Ielmini,et al.  Voltage-Driven On–Off Transition and Tradeoff With Program and Erase Current in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Electron Device Letters.

[86]  M. Terao,et al.  Electrical Phase-Change Memory: Fundamentals and State of the Art , 2009 .

[87]  M. Haemori,et al.  Impact of Cu Electrode on Switching Behavior in a Cu/HfO2/Pt Structure and Resultant Cu Ion Diffusion , 2009 .

[88]  Qi Liu,et al.  Improvement of Resistive Switching Properties in $ \hbox{ZrO}_{2}$-Based ReRAM With Implanted Ti Ions , 2009, IEEE Electron Device Letters.

[89]  M. Kozicki,et al.  Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices , 2010 .

[90]  Chakravarthy Gopalan,et al.  Demonstration of Conductive Bridging Random Access Memory (CBRAM) in Logic CMOS Process , 2010, 2010 IEEE International Memory Workshop.

[91]  Qi Liu,et al.  Resistive Switching Properties of $\hbox{Au}/ \hbox{ZrO}_{2}/\hbox{Ag}$ Structure for Low-Voltage Nonvolatile Memory Applications , 2010, IEEE Electron Device Letters.

[92]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[93]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[94]  J. Yang,et al.  High switching endurance in TaOx memristive devices , 2010 .

[95]  M. Terai,et al.  Memory-State Dependence of Random Telegraph Noise of $ \hbox{Ta}_{2}\hbox{O}_{5}/\hbox{TiO}_{2}$ Stack ReRAM , 2010, IEEE Electron Device Letters.

[96]  Y. Shih,et al.  A forming-free WOx resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability , 2010, 2010 International Electron Devices Meeting.

[97]  Yuchao Yang,et al.  Bipolar resistance switching in high-performance Cu/ZnO:Mn/Pt nonvolatile memories: active region and influence of Joule heating , 2010 .

[98]  Mircea R. Stan,et al.  Advances and Future Prospects of Spin-Transfer Torque Random Access Memory , 2010, IEEE Transactions on Magnetics.

[99]  Yidong Xia,et al.  The Resistive Switching Mechanism of Ag / SrTiO3 / Pt Memory Cells , 2010 .

[100]  Michael N. Kozicki,et al.  Power and Energy Perspectives of Nonvolatile Memory Technologies , 2010, Proceedings of the IEEE.

[101]  Tae Geun Kim,et al.  Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells , 2010 .

[102]  Frederick T. Chen,et al.  Bipolar Resistive Switching Memory Using Cu Metallic Filament in Ge0.4Se0.6 Solid Electrolyte , 2010 .

[103]  H. Hwang,et al.  Three‐Dimensional Integration of Organic Resistive Memory Devices , 2010, Advanced materials.

[104]  Qi Liu,et al.  Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures , 2010 .

[105]  F. Zhuge,et al.  Nonvolatile resistive switching memory based on amorphous carbon , 2010 .

[106]  M. Popescu,et al.  Switching mechanism in amorphous chalcogenides , 2010 .

[107]  T. Berzina,et al.  Role of the solid electrolyte composition on the performance of a polymeric memristor , 2010 .

[108]  L. Goux,et al.  Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers , 2010 .

[109]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[110]  Tzu-Yueh Chang,et al.  Electrical characteristics of an organic bistable device using an Al/Alq3/nanostructured MoO3/Alq3/p+-Si structure , 2010 .

[111]  Yuchao Yang,et al.  Reproducible and controllable organic resistive memory based on Al/poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate)/Al structure , 2010 .

[112]  K. Campbell,et al.  Influence of Sn Migration on Phase Transition in GeTe and Ge2Se3 Thin Films , 2010 .

[113]  Chang Hua Siau,et al.  A 0.13µm 64Mb multi-layered conductive metal-oxide memory , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[114]  David Moore,et al.  Silver chalcogenide based memristor devices , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[115]  G. Burr,et al.  Highly-scalable novel access device based on Mixed Ionic Electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays , 2010, 2010 Symposium on VLSI Technology.

[116]  Yuchao Yang,et al.  Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device , 2010 .

[117]  R. Williams,et al.  Sub-nanosecond switching of a tantalum oxide memristor , 2011, Nanotechnology.

[118]  Z. Wei,et al.  Demonstration of high-density ReRAM ensuring 10-year retention at 85°C based on a newly developed reliability model , 2011, 2011 International Electron Devices Meeting.

[119]  S. Braga,et al.  Experimental Analysis of Partial-SET State Stability in Phase-Change Memories , 2011, IEEE Transactions on Electron Devices.

[120]  H. Ahn,et al.  Realization of vertical resistive memory (VRRAM) using cost effective 3D process , 2011, 2011 International Electron Devices Meeting.

[121]  M. Choe,et al.  Quantized conductive filament formed by limited Cu source in sub-5nm era , 2011, 2011 International Electron Devices Meeting.

[122]  Matthew D. Pickett,et al.  SPICE modeling of memristors , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[123]  Sang-jun Choi,et al.  In Situ Observation of Voltage‐Induced Multilevel Resistive Switching in Solid Electrolyte Memory , 2011, Advanced materials.

[124]  D Ielmini,et al.  Reset Instability in Pulsed-Operated Unipolar Resistive-Switching Random Access Memory Devices , 2011, IEEE Electron Device Letters.

[125]  A. Bandyopadhyay,et al.  Tuning of nonvolatile bipolar memristive switching in Co(III) polymer with an extended azo aromatic ligand. , 2011, Journal of the American Chemical Society.

[126]  F. Wang,et al.  The effects of active layer thickness on Programmable Metallization Cell based on Ag–Ge–S , 2011 .

[127]  H. Barnaby,et al.  Impact of Alpha Particles on the Electrical Characteristics of TiO$_{2}$ Memristors , 2011, IEEE Transactions on Nuclear Science.

[128]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[129]  R. Williams,et al.  Measuring the switching dynamics and energy efficiency of tantalum oxide memristors , 2011, Nanotechnology.

[130]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[131]  M. Kozicki,et al.  Low voltage cycling of programmable metallization cell memory devices , 2011, Nanotechnology.

[132]  Shimeng Yu,et al.  On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental characterization , 2011, 2011 International Electron Devices Meeting.

[133]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[134]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[135]  R. Dittmann,et al.  Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches , 2011 .

[136]  M. Kozicki,et al.  Erratum: Electrochemical metallization memories - Fundamentals, applications, prospects (Nanotechnology (2011) 22 (254003)) , 2011 .

[137]  C. Lam,et al.  Resistance drift in phase change memory , 2012, 2012 IEEE International Reliability Physics Symposium (IRPS).

[138]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part I: Experimental Study , 2012, IEEE Transactions on Electron Devices.

[139]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[140]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[141]  C. Chung,et al.  A non-linear ReRAM cell with sub-1μA ultralow operating current for high density vertical resistive memory (VRRAM) , 2012, 2012 International Electron Devices Meeting.

[142]  R. Waser,et al.  Quantum conductance and switching kinetics of AgI-based microcrossbar cells , 2012, Nanotechnology.

[143]  K. Campbell,et al.  Investigation of Inter-Diffusion in Bilayer GeTe/SnSe Phase Change Memory Films , 2012 .

[144]  Shimeng Yu,et al.  On the Switching Parameter Variation of Metal Oxide RRAM—Part II: Model Corroboration and Device Design Strategy , 2012, IEEE Transactions on Electron Devices.

[145]  P. Boolchand,et al.  Melt Homogenization and Self-Organization in Chalcogenides-Part II , 2012 .

[146]  R. Bez,et al.  An Update on Emerging Memory: Progress to 2Xnm , 2012, 2012 4th IEEE International Memory Workshop.

[147]  A. Edwards,et al.  Electron Self-Trapping in Ge 2 Se 3 and Its Role in Ag and Sn Incorporation , 2012 .

[148]  S. Balatti,et al.  Size-Dependent Drift of Resistance Due to Surface Defect Relaxation in Conductive-Bridge Memory , 2012, IEEE Electron Device Letters.

[149]  Byung Joon Choi,et al.  Engineering nonlinearity into memristors for passive crossbar applications , 2012 .

[150]  T. Hasegawa,et al.  Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von‐Neumann Computers , 2012, Advanced materials.

[151]  D. Gilmer,et al.  Methodology for the statistical evaluation of the effect of random telegraph noise (RTN) on RRAM characteristics , 2012, 2012 International Electron Devices Meeting.

[152]  D. Ielmini,et al.  Resistance Drift Model for Conductive-Bridge (CB) RAM by Filament Surface Relaxation , 2012, 2012 4th IEEE International Memory Workshop.

[153]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[154]  Kate J. Norris,et al.  Nitride memristors , 2012 .

[155]  P. Ashwin,et al.  Phase‐change processors, memristors and memflectors , 2012 .

[156]  Run‐Wei Li,et al.  A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. , 2012, Journal of the American Chemical Society.

[157]  Shimeng Yu,et al.  HfOx based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector , 2012, 2012 International Electron Devices Meeting.

[158]  B. V. Mistry,et al.  Resistive switching of Ag/In2O3/Pt heterostructures for non volatile memory applications , 2012 .

[159]  R. Waser Redox-based resistive switching memories. , 2012, Journal of nanoscience and nanotechnology.

[160]  Frederick T. Chen,et al.  Repeatable unipolar/bipolar resistive memory characteristics and switching mechanism using a Cu nanofilament in a GeOx film , 2012 .

[161]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[162]  Ananthakumar Ramadoss,et al.  Resistive Switching Behaviors of HfO2 Thin Films by Sol–Gel Spin Coating for Nonvolatile Memory Applications , 2012 .

[163]  L. Goux,et al.  Field-driven ultrafast sub-ns programming in W\Al2O3\Ti\CuTe-based 1T1R CBRAM system , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[164]  M. Kozicki,et al.  Effects of cooperative ionic motion on programming kinetics of conductive-bridge memory cells , 2012 .

[165]  M. Marinella,et al.  Resistive switching in aluminum nitride , 2012, 70th Device Research Conference.

[166]  H. Barnaby,et al.  Gamma Ray Induced Structural Effects in Bare and Ag Doped Ge–S Thin Films for Sensor Application , 2013 .

[167]  M. Awais,et al.  Memristive Behavior in Electrohydrodynamic Atomized Layers of Poly[2-methoxy-5-(2'-ethylhexyloxy)–(p-phenylenevinylene)] for Next Generation Printed Electronics , 2013 .

[168]  Uri C. Weiser,et al.  TEAM: ThrEshold Adaptive Memristor Model , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[169]  Jing Zhang,et al.  AgInSbTe memristor with gradual resistance tuning , 2013 .

[170]  Total ionizing dose tolerance of the resistance switching of Ag-Ge4oSeo based Programmable Metallization Cells , 2013, 2013 14th European Conference on Radiation and Its Effects on Components and Systems (RADECS).

[171]  J. Yang,et al.  State Dynamics and Modeling of Tantalum Oxide Memristors , 2013, IEEE Transactions on Electron Devices.

[172]  Chung-Wei Hsu,et al.  3D vertical TaOx/TiO2 RRAM with over 103 self-rectifying ratio and sub-μA operating current , 2013, 2013 IEEE International Electron Devices Meeting.

[173]  F. Zeng,et al.  Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system , 2013 .

[174]  J. Guy,et al.  Investigation of the physical mechanisms governing data-retention in down to 10nm nano-trench Al2O3/CuTeGe conductive bridge RAM (CBRAM) , 2013, 2013 IEEE International Electron Devices Meeting.

[175]  Jiantao Zhou,et al.  Stochastic Memristive Devices for Computing and Neuromorphic Applications , 2013, Nanoscale.

[176]  M. Kozicki,et al.  Cation-based resistance change memory , 2013 .

[177]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[178]  Chris Yakopcic,et al.  Generalized Memristive Device SPICE Model and its Application in Circuit Design , 2013, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[179]  H. Barnaby,et al.  Total-Ionizing-Dose Effects on the Resistance Switching Characteristics of Chalcogenide Programmable Metallization Cells , 2013, IEEE Transactions on Nuclear Science.

[180]  H. Wong,et al.  Nanometer-Scale ${\rm HfO}_{x}$ RRAM , 2013 .

[181]  O. Richard,et al.  Vacancy-modulated conductive oxide resistive RAM (VMCO-RRAM): An area-scalable switching current, self-compliant, highly nonlinear and wide on/off-window resistive switching cell , 2013, 2013 IEEE International Electron Devices Meeting.

[182]  T. Berzina,et al.  Investigation of electrical properties of organic memristors based on thin polyaniline-graphene films , 2013, Russian Microelectronics.

[183]  D. B. Strukov,et al.  Programmable CMOS/Memristor Threshold Logic , 2013, IEEE Transactions on Nanotechnology.

[184]  M. Marinella,et al.  Electrical conductivity in oxygen-deficient phases of tantalum pentoxide from first-principles calculations , 2013 .

[185]  H. Hwang,et al.  Nanoscale (∼10nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode , 2013, 2013 IEEE International Electron Devices Meeting.

[186]  C. Wright,et al.  Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices , 2013 .

[187]  Benton Calhoun,et al.  A 0.6V 8 pJ/write non-volatile CBRAM macro embedded in a body sensor node for ultra low energy applications , 2013, 2013 Symposium on VLSI Circuits.

[188]  K. MacVittie,et al.  Electrochemical System with Memimpedance Properties , 2013 .

[189]  Mahmut T. Kandemir,et al.  Evaluating STT-RAM as an energy-efficient main memory alternative , 2013, 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).

[190]  A. Thomas,et al.  Memristor-based neural networks , 2013 .

[191]  D. Ielmini,et al.  Self-aligned nanotube-nanowire phase change memory. , 2013, Nano letters.

[192]  Cheng-Lin Tsai,et al.  Resistive random access memory enabled by carbon nanotube crossbar electrodes. , 2013, ACS nano.

[193]  O. Pirrotta,et al.  Leakage current through the poly-crystalline HfO2: Trap densities at grains and grain boundaries , 2013 .

[194]  S. Ambrogio,et al.  Analytical Modeling of Oxide-Based Bipolar Resistive Memories and Complementary Resistive Switches , 2014, IEEE Transactions on Electron Devices.

[195]  H. Barnaby,et al.  Gamma radiation induced effects in floppy and rigid Ge-containing chalcogenide thin films , 2014 .

[196]  S. Altendorf,et al.  Growth and characterization of Sc-doped EuO thin films , 2014 .

[197]  M. Marinella,et al.  Isothermal Switching and Detailed Filament Evolution in Memristive Systems , 2014, Advanced materials.

[198]  K. Terabe,et al.  Down-scaling of resistive switching to nanoscale using porous anodic alumina membranes , 2014 .

[199]  Yan Lei,et al.  Memristive learning and memory functions in polyvinyl alcohol polymer memristors , 2014 .

[200]  P. Narayanan,et al.  Access devices for 3D crosspoint memorya) , 2014 .

[201]  H. Barnaby,et al.  Thin Ge–Se films as a sensing material for radiation doses , 2014 .

[202]  Leon O. Chua,et al.  If it’s pinched it’s a memristor , 2014 .

[203]  Yue Bai,et al.  Study of Multi-level Characteristics for 3D Vertical Resistive Switching Memory , 2014, Scientific reports.

[204]  Matthew J. Marinella Emerging resistive switching memory technologies: Overview and current status , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[205]  O. Pirrotta,et al.  Progresses in Modeling HfOx RRAM Operations and Variability , 2014 .

[206]  H. Barnaby,et al.  Investigation of Single Event Induced Soft Errors in Programmable Metallization Cell Memory , 2014, IEEE Transactions on Nuclear Science.

[207]  F. Zeng,et al.  Recent progress in resistive random access memories: Materials, switching mechanisms, and performance , 2014 .

[208]  Guido Torelli,et al.  Drift-driven investigation of phase distribution in phase-change memories , 2014, 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS).

[209]  A. Fantini,et al.  Single- and Multiple-Event Induced Upsets in ${\rm HfO}_2/{\rm Hf}$ 1T1R RRAM , 2014, IEEE Transactions on Nuclear Science.

[210]  Masahide Matsumoto,et al.  A 130.7-$\hbox{mm}^{2}$ 2-Layer 32-Gb ReRAM Memory Device in 24-nm Technology , 2014, IEEE Journal of Solid-State Circuits.

[211]  Shinhyun Choi,et al.  Comprehensive physical model of dynamic resistive switching in an oxide memristor. , 2014, ACS nano.

[212]  H. Barnaby,et al.  Total Ionizing Dose Tolerance of ${\rm Ag} - {\rm Ge}_{40}{\rm S}_{60}$ based Programmable Metallization Cells , 2014, IEEE Transactions on Nuclear Science.

[213]  Y. G. Velo,et al.  Total ionizing dose effect of γ-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory , 2014 .

[214]  Siddharth Gaba,et al.  3-D Vertical Dual-Layer Oxide Memristive Devices , 2014, IEEE Transactions on Electron Devices.

[215]  Run‐Wei Li,et al.  Dithienopyrrole-/Benzodithiophene-Based Donor–Acceptor Polymers for Memristor , 2014 .

[216]  A. Saci,et al.  Thermal conductivity measurement of a Sb2Te3 phase change nanowire , 2014 .

[217]  Evgeny Katz,et al.  Self-powered electrochemical memristor based on a biofuel cell--towards memristors integrated with biocomputing systems. , 2014, Chemical communications.

[218]  H. Barnaby,et al.  Total Ionizing Dose Retention Capability of Conductive Bridging Random Access Memory , 2014, IEEE Electron Device Letters.

[219]  Yu Chen,et al.  Polymer memristor for information storage and neuromorphic applications , 2014 .

[220]  Wei D. Lu,et al.  Electrochemical dynamics of nanoscale metallic inclusions in dielectrics , 2014, Nature Communications.

[221]  H. Barnaby,et al.  New functionality of chalcogenide glasses for radiation sensing of nuclear wastes. , 2014, Journal of Hazardous Materials.

[222]  G. Lanzani Materials for bioelectronics: organic electronics meets biology. , 2014, Nature materials.