Oxidative stress and autophagy-related changes during retinal degeneration and development

[1]  P. Boya,et al.  Autophagy in the eye: Development, degeneration, and aging , 2016, Progress in Retinal and Eye Research.

[2]  Xianqun Fan,et al.  The Evolving Functions of Autophagy in Ocular Health: A Double-edged Sword , 2016, International journal of biological sciences.

[3]  F. J. Romero,et al.  Alterations in glutamate cysteine ligase content in the retina of two retinitis pigmentosa animal models. , 2016, Free radical biology & medicine.

[4]  F. Schottler,et al.  Autophagy supports color vision , 2015, Autophagy.

[5]  E. J. de la Rosa,et al.  Adalimumab Reduces Photoreceptor Cell Death in A Mouse Model of Retinal Degeneration , 2015, Scientific Reports.

[6]  P. Boya,et al.  Autophagic flux determination in vivo and ex vivo. , 2015, Methods.

[7]  R. Apte,et al.  Autophagy supports survival and phototransduction protein levels in rod photoreceptors , 2015, Cell Death and Differentiation.

[8]  P. Boya,et al.  Lysosomal membrane permeabilization and autophagy blockade contribute to photoreceptor cell death in a mouse model of retinitis pigmentosa , 2014, Cell Death and Differentiation.

[9]  Thomas Euler,et al.  Identification of a Common Non-Apoptotic Cell Death Mechanism in Hereditary Retinal Degeneration , 2014, PloS one.

[10]  F. Cecconi,et al.  Oxidative stress and autophagy: the clash between damage and metabolic needs , 2014, Cell Death and Differentiation.

[11]  C. Mitchell,et al.  Autophagy in the eye: implications for ocular cell health. , 2014, Experimental eye research.

[12]  E. Aller,et al.  Altered Antioxidant-Oxidant Status in the Aqueous Humor and Peripheral Blood of Patients with Retinitis Pigmentosa , 2013, PloS one.

[13]  P. Boya,et al.  Balance between autophagic pathways preserves retinal homeostasis , 2013, Aging cell.

[14]  A. Vingrys,et al.  Functional and neurochemical development in the normal and degenerating mouse retina , 2013, The Journal of comparative neurology.

[15]  M. Golczak,et al.  Retinal Photodamage Mediated by All‐trans‐retinal † , 2012, Photochemistry and photobiology.

[16]  A. Cuervo,et al.  Chaperone-mediated autophagy: a unique way to enter the lysosome world. , 2012, Trends in cell biology.

[17]  A. Trovato-Salinaro,et al.  Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. , 2012, Biochimica et biophysica acta.

[18]  V. Sheffield,et al.  TUDCA slows retinal degeneration in two different mouse models of retinitis pigmentosa and prevents obesity in Bardet-Biedl syndrome type 1 mice. , 2012, Investigative ophthalmology & visual science.

[19]  Wenjun Xiong,et al.  Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation to Blame?* , 2011, The Journal of Biological Chemistry.

[20]  M. V. Vander Heiden,et al.  Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. , 2011, Annual review of cell and developmental biology.

[21]  P. Campochiaro,et al.  Overexpression of SOD in retina: need for increase in H2O2-detoxifying enzyme in same cellular compartment. , 2011, Free radical biology & medicine.

[22]  J. Lemasters,et al.  Differential effects of rapamycin on rods and cones during light-induced stress in albino mice. , 2011, Investigative ophthalmology & visual science.

[23]  A. Cuervo,et al.  Chaperone-mediated autophagy in protein quality control. , 2011, Current opinion in cell biology.

[24]  D. Klionsky,et al.  Eaten alive: a history of macroautophagy , 2010, Nature Cell Biology.

[25]  Daniel J Klionsky,et al.  Mammalian autophagy: core molecular machinery and signaling regulation. , 2010, Current opinion in cell biology.

[26]  F. J. Romero,et al.  Antioxidants rescue photoreceptors in rd1 mice: Relationship with thiol metabolism. , 2010, Free radical biology & medicine.

[27]  P. Campochiaro,et al.  NADPH oxidase plays a central role in cone cell death in retinitis pigmentosa , 2009, Journal of neurochemistry.

[28]  Yoshiaki Kamada,et al.  Dynamics and diversity in autophagy mechanisms: lessons from yeast , 2009, Nature Reviews Molecular Cell Biology.

[29]  P. Campochiaro,et al.  Increased expression of catalase and superoxide dismutase 2 reduces cone cell death in retinitis pigmentosa. , 2009, Molecular therapy : the journal of the American Society of Gene Therapy.

[30]  D. Schorderet,et al.  Mechanisms of apoptosis in retinitis pigmentosa. , 2009, Current molecular medicine.

[31]  K. Roth,et al.  Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. , 2009, Antioxidants & redox signaling.

[32]  N. Cuenca,et al.  Functional and structural modifications during retinal degeneration in the rd10 mouse , 2008, Neuroscience.

[33]  A. Cuervo,et al.  Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. , 2008, Molecular biology of the cell.

[34]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[35]  P. Campochiaro,et al.  Antioxidants slow photoreceptor cell death in mouse models of retinitis pigmentosa , 2007, Journal of cellular physiology.

[36]  P. Koehl,et al.  Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential , 2007, BMC Molecular Biology.

[37]  T. Veen,et al.  Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration , 2007, Neuroscience.

[38]  Qihua Sun,et al.  Autophagy Gene-Dependent Clearance of Apoptotic Cells during Embryonic Development , 2007, Cell.

[39]  Enrica Strettoi,et al.  Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: A morphological and ERG study , 2007, The Journal of comparative neurology.

[40]  Dyonne T Hartong,et al.  Retinitis pigmentosa , 2009 .

[41]  Dean P. Jones Redefining oxidative stress. , 2006, Antioxidants & redox signaling.

[42]  T. L. McGee,et al.  Search for Recessive Retinitis Pigmentosa Genes Using Microarray Analysis of RNA Expression Levels in Lymphoblasts , 2006 .

[43]  P. Sullivan,et al.  The emerging functions of UCP2 in health, disease, and therapeutics. , 2006, Antioxidants & redox signaling.

[44]  Dean P. Jones,et al.  Oxidant-induced apoptosis in human retinal pigment epithelial cells: dependence on extracellular redox state. , 2005, Investigative ophthalmology & visual science.

[45]  Mónica García,et al.  Cell death in the developing vertebrate retina. , 2004, The International journal of developmental biology.

[46]  P. Humphries,et al.  On the genetics of retinitis pigmentosa and on mutation‐independent approaches to therapeutic intervention , 2002, The EMBO journal.

[47]  Dringen Glutathione metabolism and oxidative stress in neurodegeneration , 2000, European journal of biochemistry.

[48]  C. Remé,et al.  Photoreceptor autophagy: effects of light history on number and opsin content of degradative vacuoles. , 1999, Investigative ophthalmology & visual science.

[49]  T. Dryja,et al.  Frequency of mutations in the gene encoding the alpha subunit of rod cGMP-phosphodiesterase in autosomal recessive retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[50]  P Bailey,et al.  Double Edged Sword , 2002 .

[51]  Hall The role of glutathione in the regulation of apoptosis , 1999, European journal of clinical investigation.

[52]  W. Hauswirth,et al.  Selective degradation of nonsense beta-phosphodiesterase mRNA in the heterozygous rd mouse. , 1998, Investigative ophthalmology & visual science.

[53]  C. Colussi,et al.  Rescue of cells from apoptosis by inhibition of active GSH extrusion , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[54]  S. Orrenius,et al.  Rapid and Specific Efflux of Reduced Glutathione during Apoptosis Induced by Anti-Fas/APO-1 Antibody* , 1996, The Journal of Biological Chemistry.

[55]  G. Jeyarasasingam,et al.  Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  K. Jellinger,et al.  Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease , 1992, Neuroscience Letters.

[57]  W. Markesbery,et al.  Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. W. Young,et al.  Cell death during differentiation of the retina in the mouse , 1984, The Journal of comparative neurology.

[59]  D. J. Reed,et al.  High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. , 1980, Analytical biochemistry.

[60]  D. Farber,et al.  Cyclic Guanosine Monophosphate: Elevation in Degenerating Photoreceptor Cells of the C3H Mouse Retina , 1974, Science.

[61]  Oliver H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.

[62]  T. Katome,et al.  Diagnostic imaging in patients with retinitis pigmentosa. , 2012, The journal of medical investigation : JMI.

[63]  C. Cepko,et al.  Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa , 2009, Nature Neuroscience.

[64]  M. Bayés,et al.  Homozygous tandem duplication within the gene encoding the β‐subunit of rod phosphodiesterase as a cause for autosomal recessive retinitis pigmentosa , 1995 .

[65]  A. Bill,et al.  Control of retinal and choroidal blood flow , 1990, Eye.

[66]  O. Rennert DURING EMBRYONIC DEVELOPMENT , 1972 .