Solubilization kinetics determines the pulsatory dynamics of lipid vesicles exposed to surfactant

In my Montreal lecture notes of 1988, it was suggested that the theory of linear quantum groups can be presented in the framework of the category of {\it quadratic algebras} (imagined as algebras of functions on "quantum linear spaces"), and quadratic algebras of their inner (co)homomorphisms. Soon it was understood (E. Getzler and J. Jones, V. Ginzburg, M. Kapranov, M. Kontsevich, M. Markl, B. Vallette et al.) that the class of {\it quadratic operads} can be introduced and the main theorems about quadratic algebras can be generalised to the level of such operads, if their components are {\it linear spaces} (or objects of more general monoidal categories.) When quantum cohomology entered the scene, it turned out that the basic tree level (genus zero) (co)operad of quantum cohomology not only is {\it quadratic} one, but its {\it components are themselves quadratic algebras.} In this short note, I am studying the interaction of quadratic algebras structure with operadic structure in the context of enriched category formalism due to G. M. Kelly et al.

[1]  M. Kapranov,et al.  Koszul duality for Operads , 1994, 0709.1228.

[2]  Yu. I. Manin,et al.  Generalized Operads and Their Inner Cohomomorphisms , 2006 .

[3]  I︠u︡. I. Manin Topics in Noncommutative Geometry , 1991 .

[4]  M. Kontsevich,et al.  Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994 .

[5]  Leon A. Takhtajan,et al.  Quantization of Lie Groups and Lie Algebras , 1987 .

[6]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[7]  E. Riehl Basic concepts of enriched category theory , 2014 .

[8]  Bruno Vallette,et al.  Manin products, Koszul duality, Loday algebras and Deligne conjecture , 2006, math/0609002.

[9]  Y. Manin,et al.  On the derived category of $\bar{M}_{0,n}$ , 2011, 1201.0265.

[10]  Y. Manin,et al.  Towards Motivic Quantum Cohomology of M̄0,S , 2013, Proceedings of the Edinburgh Mathematical Society.

[11]  I︠u︡. I. Manin Quantum groups and non-commutative geometry , 1988 .

[12]  Benjamin C. Ward,et al.  Feynman Categories , 2013, Astérisque.

[13]  Gavril Farkas,et al.  The mori cones of moduli spaces of pointed curves of small genus , 2001 .

[14]  Frederic Chapoton On a Hopf operad containing the Poisson operad , 2003 .

[15]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[16]  Martin Markl,et al.  Operads in algebra, topology, and physics , 2002 .

[17]  Y. Manin Some remarks on Koszul algebras and quantum groups , 1987 .

[18]  Yuri I. Manin,et al.  Frobenius manifolds, quantum cohomology, and moduli spaces , 1999 .

[19]  Brian Day,et al.  Quantum categories, star autonomy, and quantum groupoids , 2003 .

[20]  Y. Manin,et al.  Towards motivic quantum cohomology of $\bar{M}_{0,S}$ , 2011, 1107.4915.

[21]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[22]  Y. Manin Grothendieck–Verdier duality patterns in quantum algebra , 2017, 1701.01261.

[23]  V. Drinfeld,et al.  A duality formalism in the spirit of Grothendieck and Verdier , 2011, 1108.6020.

[24]  V. Dotsenko,et al.  De Rham cohomology and homotopy Frobenius manifolds , 2012, 1203.5077.

[25]  J. Loday,et al.  Examples of Algebraic Operads , 2012 .

[26]  V. Dotsenko,et al.  Toric varieties of Loday's associahedra and noncommutative cohomological field theories , 2015, Journal of Topology.