Exact-2-relation graphs

Pairwise compatibility graphs (PCGs) with non-negative integer edge weights recently have been used to describe rare evolutionary events and scenarios with horizontal gene transfer. Here we consider the case that vertices are separated by exactly two discrete events: Given a tree $T$ with leaf set $L$ and edge-weights $\lambda: E(T)\to\mathbb{N}_0$, the non-negative integer pairwise compatibility graph $\textrm{nniPCG}(T,\lambda,2,2)$ has vertex set $L$ and $xy$ is an edge whenever the sum of the non-negative integer weights along the unique path from $x$ to $y$ in $T$ equals $2$. A graph $G$ has a representation as $\textrm{nniPCG}(T,\lambda,2,2)$ if and only if its point-determining quotient $G/\!\rthin$ is a block graph, where two vertices are in relation $\rthin$ if they have the same neighborhood in $G$. If $G$ is of this type, a labeled tree $(T,\lambda)$ explaining $G$ can be constructed efficiently. In addition, we consider an oriented version of this class of graphs.

[1]  Ralph McKenzie,et al.  Cardinal multiplication of structures with a reflexive relation , 1971 .

[2]  William Arndt,et al.  Phylogenetic analysis of genome rearrangements among five mammalian orders. , 2012, Molecular phylogenetics and evolution.

[3]  Roded Sharan,et al.  Cluster graph modification problems , 2002, Discret. Appl. Math..

[4]  Md. Saidur Rahman,et al.  Pairwise compatibility graphs , 2008, WALCOM.

[5]  David P. Sumner Point determination in graphs , 1973, Discret. Math..

[6]  Rossella Petreschi,et al.  Graphs that Are Not Pairwise Compatible: A New Proof Technique (Extended Abstract) , 2018, IWOCA.

[7]  Flavia Bonomo,et al.  NP-completeness results for edge modification problems , 2006, Discret. Appl. Math..

[8]  J. Wägele,et al.  Deep metazoan phylogeny : the backbone of the tree of life : new insights from analyses of molecules, morphology, and theory of data analysis , 2014 .

[9]  Ji Li,et al.  Enumeration of point-determining graphs , 2011, J. Comb. Theory, Ser. A.

[10]  Dieter Rautenbach,et al.  Exact leaf powers , 2010, Theor. Comput. Sci..

[11]  R. Sritharan Graph modification problem for some classes of graphs , 2016, J. Discrete Algorithms.

[12]  P. Holland,et al.  Rare genomic changes as a tool for phylogenetics. , 2000, Trends in ecology & evolution.

[13]  Bijan Taeri,et al.  A characterization of block graphs , 2010, Discret. Appl. Math..

[14]  Goran Kilibarda Enumeration of Unlabelled Mating Graphs , 2007, Graphs Comb..

[15]  Katharina T. Huber,et al.  Basic Phylogenetic Combinatorics , 2011 .

[16]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[17]  Andreas Brandstädt,et al.  Ptolemaic Graphs and Interval Graphs Are Leaf Powers , 2008, LATIN.

[18]  Peter F. Stadler,et al.  A Short Note on Undirected Fitch Graphs , 2017, Art Discret. Appl. Math..

[19]  Dimitrios M. Thilikos,et al.  On Graph Powers for Leaf-Labeled Trees , 2002, J. Algorithms.

[20]  P. Stadler,et al.  Inferring phylogenetic trees from the knowledge of rare evolutionary events , 2017, Journal of Mathematical Biology.

[21]  C. M. Pease,et al.  COMBINATORICS AND VARIETY OF MATING‐TYPE SYSTEMS , 1989, Evolution; international journal of organic evolution.

[22]  Md. Iqbal Hossain,et al.  Journal of Graph Algorithms and Applications Triangle-free Outerplanar 3-graphs Are Pairwise Compatibility Graphs , 2012 .

[23]  Tiziana Calamoneri,et al.  Pairwise Compatibility Graphs: A Survey , 2016, SIAM Rev..

[24]  Katharina T. Huber,et al.  Orthology relations, symbolic ultrametrics, and cographs , 2013, Journal of mathematical biology.

[25]  Audrey Nailor,et al.  miRNAs: small genes with big potential in metazoan phylogenetics. , 2013, Molecular biology and evolution.

[26]  Christophe Paul,et al.  Fully dynamic recognition algorithm and certificate for directed cographs , 2006, Discret. Appl. Math..

[27]  Wilfried Imrich,et al.  Factoring cardinal product graphs in polynomial time , 1998, Discret. Math..

[28]  Rossella Petreschi,et al.  Some classes of graphs that are not PCGs , 2017, 1707.07436.

[29]  Hans-Jürgen Bandelt,et al.  Distance-hereditary graphs , 1986, J. Comb. Theory B.

[30]  Satish Rao,et al.  On the tandem duplication-random loss model of genome rearrangement , 2006, SODA '06.

[31]  J. Ian Munro,et al.  Efficient Generation of Uniform Samples from Phylogenetic Trees , 2003, WABI.

[32]  Antonio Frangioni,et al.  Pairwise Compatibility Graphs of Caterpillars , 2014, Comput. J..

[33]  Peter F. Stadler,et al.  Reconstructing gene trees from Fitch’s xenology relation , 2017, Journal of Mathematical Biology.

[34]  Christophe Paul,et al.  Fully dynamic recognition algorithm and certificate for directed cographs , 2004, Graph-Theoretic Concepts in Computer Science.

[35]  J. M. S. S. Pereira,et al.  A note on the tree realizability of a distance matrix , 1969 .

[36]  Rossella Petreschi,et al.  Exploring pairwise compatibility graphs , 2013, Theor. Comput. Sci..

[37]  Debajyoti Mondal,et al.  Journal of Graph Algorithms and Applications a Necessary Condition and a Sufficient Condition for Pairwise Compatibility Graphs , 2022 .