Topological sensitivity analysis in the context of ultrasonic non-destructive testing.

Abstract This paper deals with the use of the topological derivative in detection problems involving waves. In the first part, a framework to carry out the topological sensitivity analysis in this context is proposed. Arbitrarily shaped holes and cracks with Neumann boundary condition in 2 and 3 space dimensions are considered. In the second part, a numerical example concerning the treatment of ultrasonic probing data in metallic plates is presented. With moderate noise in the measurements, the defects (air bubbles) are detected and satisfactorily localized by means of a single sensitivity computation.

[1]  M. Vogelius,et al.  Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogen , 2000 .

[2]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[3]  H. Ammari,et al.  Polarization tensors and effective properties of anisotropic composite materials , 2005 .

[4]  Bojan B. Guzina,et al.  Sounding of finite solid bodies by way of topological derivative , 2004 .

[5]  Niels Olhoff,et al.  Generalized shape optimization of three-dimensional structures using materials with optimum microstructures , 1998 .

[6]  Bessem Samet,et al.  The Topological Asymptotic for the Helmholtz Equation , 2003, SIAM J. Control. Optim..

[7]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[8]  Yves Capdeboscq,et al.  A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction , 2003 .

[9]  Marc Schoenauer,et al.  Mechanical inclusions identification by evolutionary computation , 1996 .

[10]  A. Il'in,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[11]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[12]  Avner Friedman,et al.  Determining Cracks by Boundary Measurements , 1989 .

[13]  José Barros-Neto,et al.  Problèmes aux limites non homogènes , 1966 .

[14]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[15]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[16]  R. Feijóo,et al.  Topological sensitivity analysis , 2003 .

[17]  A new method for reconstructing electromagnetic inhomogeneities of small volume , 2003 .

[18]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[19]  Avner Friedman,et al.  Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence , 1989 .

[20]  Samuel Amstutz Aspects théoriques et numériques en optimisation de forme topologique , 2003 .

[21]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[22]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[23]  Mohamed Masmoudi,et al.  Numerical solution for exterior problems , 1987 .

[24]  Raúl A. Feijóo,et al.  THE TOPOLOGICAL DERIVATIVE FOR THE POISSON'S PROBLEM , 2003 .

[25]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[26]  Habib Ammari,et al.  Reconstruction of Elastic Inclusions of Small Volume via Dynamic Measurements , 2006 .

[27]  Jan Sokolowski,et al.  Asymptotic analysis of shape functionals , 2003 .

[28]  Johann Radon,et al.  Austrian Academy of Sciences , 2018, The Grants Register 2019.

[29]  J. Nédélec,et al.  Numerical solution of an exterior Neumann problem using a double layer potential , 1978 .

[30]  Naoshi Nishimura,et al.  A boundary integral equation method for an inverse problem related to crack detection , 1991 .

[31]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[32]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[33]  Ph. Guillaume,et al.  The Topological Asymptotic Expansion for the Dirichlet Problem , 2002, SIAM J. Control. Optim..

[34]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[35]  Philippe Guillaume,et al.  The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..

[36]  Ph. Guillaume,et al.  Topological Sensitivity and Shape Optimization for the Stokes Equations , 2004, SIAM J. Control. Optim..

[37]  G. Allaire,et al.  Optimal design for minimum weight and compliance in plane stress using extremal microstructures , 1993 .

[38]  R. Gadyl'shin Existence and asymptotics of poles with small imaginary part for the Helmholtz resonator , 1997 .

[39]  F. G. Leppington MATCHING OF ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS , 1994 .

[40]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[41]  J. Cea Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût , 1986 .