Conditional Inferences Based on Vine Copulas with Applications to Credit Spread Data of Corporate Bonds

Understanding the dependence relationship of credit spreads of corporate bonds is important for risk management. Vine copula models with tail dependence are used to analyze a credit spread dataset of Chinese corporate bonds, understand the dependence among different sectors, and perform conditional inferences. It is shown how the effect of tail dependence affects risk transfer, or the conditional distributions given one variable is extreme. Vine copula models also provide more accurate cross prediction results compared with linear regressions. These conditional inference techniques are a statistical contribution for analysis of bond credit spreads of investment portfolios consisting of corporate bonds from various sectors.

[1]  J. Birge,et al.  Credit Shock Propagation Along Supply Chains: Evidence from the CDS Market , 2017, Manag. Sci..

[2]  Jong-Min Kim,et al.  Modeling non-normal corporate bond yield spreads by copula , 2020 .

[3]  H. Joe,et al.  Flexible copula models with dynamic dependence and application to financial data , 2020 .

[4]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[5]  Dominik Wied,et al.  Model and Moment Selection in Factor Copula Models , 2019 .

[6]  Claudia Czado,et al.  Analyzing Dependent Data with Vine Copulas , 2019, Lecture Notes in Statistics.

[7]  Harry Joe,et al.  Vine copula structure learning via Monte Carlo tree search , 2019, AISTATS.

[8]  J. Birge,et al.  Online Appendix for Credit Risk Propagation along Supply Chains: Evidence from the CDS Market , 2019, SSRN Electronic Journal.

[9]  Harry Joe,et al.  Prediction based on conditional distributions of vine copulas , 2018, Comput. Stat. Data Anal..

[10]  Claudia Czado,et al.  Model selection in sparse high-dimensional vine copula models with an application to portfolio risk , 2019, J. Multivar. Anal..

[11]  M. C. Ausín,et al.  Parallel Bayesian Inference for High-Dimensional Dynamic Factor Copulas* , 2018, Journal of Financial Econometrics.

[12]  Pavel Krupskii,et al.  Tail-weighted dependence measures with limit being the tail dependence coefficient , 2018 .

[13]  Claudia Czado,et al.  D-vine quantile regression with discrete variables , 2017 .

[14]  Claudia Czado,et al.  D-vine copula based quantile regression , 2015, Comput. Stat. Data Anal..

[15]  Harry Joe,et al.  Truncation of vine copulas using fit indices , 2015, J. Multivar. Anal..

[16]  Semiparametric Conditional Quantile Estimation Through Copula-Based Multivariate Models , 2015 .

[17]  Gregor N. F. Weiß,et al.  Mixture Pair-Copula-Constructions , 2015 .

[18]  Dalu Zhang Vine copulas and applications to the European Union sovereign debt analysis , 2014 .

[19]  H. Joe Dependence Modeling with Copulas , 2014 .

[20]  Eike Christian Brechmann,et al.  Conditional copula simulation for systemic risk stress testing , 2013 .

[21]  Andrew J. Patton,et al.  Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads , 2013 .

[22]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[23]  Stuart A. Klugman,et al.  Copula Regression , 2011 .

[24]  Dorota Kurowicka,et al.  Dependence Modeling: Vine Copula Handbook , 2010 .

[25]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..

[26]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[27]  Tatsuyoshi Okimoto New Evidence of Asymmetric Dependence Structures in International Equity Markets , 2008, Journal of Financial and Quantitative Analysis.

[28]  P. Embrechts,et al.  Dependence modeling with copulas , 2007 .

[29]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[30]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[31]  T. Bedford,et al.  Vines: A new graphical model for dependent random variables , 2002 .

[32]  Paul Newbold,et al.  Testing the equality of prediction mean squared errors , 1997 .

[33]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[34]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .