Conditional Inferences Based on Vine Copulas with Applications to Credit Spread Data of Corporate Bonds
暂无分享,去创建一个
Harry Joe | Shenyi Pan | Guofu Li | H. Joe | Shenyi Pan | Guofu Li
[1] J. Birge,et al. Credit Shock Propagation Along Supply Chains: Evidence from the CDS Market , 2017, Manag. Sci..
[2] Jong-Min Kim,et al. Modeling non-normal corporate bond yield spreads by copula , 2020 .
[3] H. Joe,et al. Flexible copula models with dynamic dependence and application to financial data , 2020 .
[4] F. Diebold,et al. Comparing Predictive Accuracy , 1994, Business Cycles.
[5] Dominik Wied,et al. Model and Moment Selection in Factor Copula Models , 2019 .
[6] Claudia Czado,et al. Analyzing Dependent Data with Vine Copulas , 2019, Lecture Notes in Statistics.
[7] Harry Joe,et al. Vine copula structure learning via Monte Carlo tree search , 2019, AISTATS.
[8] J. Birge,et al. Online Appendix for Credit Risk Propagation along Supply Chains: Evidence from the CDS Market , 2019, SSRN Electronic Journal.
[9] Harry Joe,et al. Prediction based on conditional distributions of vine copulas , 2018, Comput. Stat. Data Anal..
[10] Claudia Czado,et al. Model selection in sparse high-dimensional vine copula models with an application to portfolio risk , 2019, J. Multivar. Anal..
[11] M. C. Ausín,et al. Parallel Bayesian Inference for High-Dimensional Dynamic Factor Copulas* , 2018, Journal of Financial Econometrics.
[12] Pavel Krupskii,et al. Tail-weighted dependence measures with limit being the tail dependence coefficient , 2018 .
[13] Claudia Czado,et al. D-vine quantile regression with discrete variables , 2017 .
[14] Claudia Czado,et al. D-vine copula based quantile regression , 2015, Comput. Stat. Data Anal..
[15] Harry Joe,et al. Truncation of vine copulas using fit indices , 2015, J. Multivar. Anal..
[16] Semiparametric Conditional Quantile Estimation Through Copula-Based Multivariate Models , 2015 .
[17] Gregor N. F. Weiß,et al. Mixture Pair-Copula-Constructions , 2015 .
[18] Dalu Zhang. Vine copulas and applications to the European Union sovereign debt analysis , 2014 .
[19] H. Joe. Dependence Modeling with Copulas , 2014 .
[20] Eike Christian Brechmann,et al. Conditional copula simulation for systemic risk stress testing , 2013 .
[21] Andrew J. Patton,et al. Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads , 2013 .
[22] Claudia Czado,et al. Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..
[23] Stuart A. Klugman,et al. Copula Regression , 2011 .
[24] Dorota Kurowicka,et al. Dependence Modeling: Vine Copula Handbook , 2010 .
[25] Aristidis K. Nikoloulopoulos,et al. Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..
[26] A. Frigessi,et al. Pair-copula constructions of multiple dependence , 2009 .
[27] Tatsuyoshi Okimoto. New Evidence of Asymmetric Dependence Structures in International Equity Markets , 2008, Journal of Financial and Quantitative Analysis.
[28] P. Embrechts,et al. Dependence modeling with copulas , 2007 .
[29] A. Raftery,et al. Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .
[30] Roger M. Cooke,et al. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.
[31] T. Bedford,et al. Vines: A new graphical model for dependent random variables , 2002 .
[32] Paul Newbold,et al. Testing the equality of prediction mean squared errors , 1997 .
[33] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[34] M. Kendall. A NEW MEASURE OF RANK CORRELATION , 1938 .