\'Etale cohomology, Lefschetz Theorems and Number of Points of Singular Varieties over Finite Fields
暂无分享,去创建一个
[1] A. Weil. Numbers of solutions of equations in finite fields , 1949 .
[2] Jean-Pierre Serre,et al. Groupes algébriques et corps de classes , 1975 .
[3] J. Jouanolou,et al. Théorèmes de Bertini et applications , 1983 .
[4] C. Hooley,et al. On the number of points on a complete intersection over a finite field , 1991 .
[5] G. L.. Collected Papers , 1912, Nature.
[6] P. Deligne. La conjecture de Weil. I , 1974 .
[7] A. Weil. Sur les critères d'équivalence en géométrie algébrique , 1954 .
[8] A. Grothendieck,et al. Cohomologie l-adique et fonctions L , 1977 .
[9] Jean-Pierre Serre. Morphismes universels et variété d'Albanese , 1959 .
[10] Nicholas M. Katz,et al. Estimates for “singular” exponential sums , 1999 .
[11] Steven Sperber,et al. On the degree of the $L$-function associated with an exponential sum , 1988 .
[12] Marc Perret,et al. NUMBER OF POINTS OF PRYM VARIETIES OVER FINITE FIELDS , 2006, Glasgow Mathematical Journal.
[13] A. Weil. Sur les courbes algébriques et les variétés qui s'en déduisent , 1948 .
[14] F. Hirzebruch. Der Satz von Riemann-Roch in Faisceau-theoretischer Formulierung: einige Anwendungen und offene Fragen , 1956 .
[15] P. Deligne,et al. Groupes de monodromie en geometrie algebrique , 1972 .
[16] S. Lang,et al. NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .
[17] Alexander Grothendieck,et al. Technique de descente et théorèmes d'existence en géométrie algébrique. VI. Les schémas de Picard : propriétés générales , 1962 .
[18] Nicholas M. Katz,et al. Sums of Betti Numbers in Arbitrary Characteristic , 2001 .
[19] Wolfgang M. Schmidt,et al. A lower bound for the number of solutions of equations over finite fields , 1974 .
[20] Sudhir R. Ghorpade,et al. Number of Solutions of Equations over Finite Fields and a Conjecture of Lang and Weil , 2002 .
[21] D. Northcott,et al. Lessons on rings, modules and multiplicities , 1968 .
[22] A. Grothendieck. Étude locale des schémas et des morphismes de schémas , 1964 .
[23] G. Lachaud. Number of points of plane sections and linear codes defined on algebraic varieties , 1996 .
[24] E. Bombieri,et al. On the estimation of certain exponential sums , 1995 .
[25] S. Lang,et al. Finiteness Theorems in Geometric Classfield Theory , 2000 .
[26] R. Hartshorne. Equivalence relations of algebraic cycles and subvarieties of small codimension , 1974 .
[27] S. Lipman,et al. Introduction to resolution of singularities , 1974 .
[28] P. Deligne,et al. La Conjecture de Weil. II , 1980 .
[29] Ricardo Garcia Lopez. On exponential sums , 1997 .
[30] C. S. Seshardi. Variété de Picard d'une variété complète , 1962 .
[31] Alexei N. Skorobogatov,et al. Exponential sums and rational points on complete intersections , 1990 .
[32] A. Grothendieck,et al. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, (SAG 2) : séminaire de géométrie algébrique, du Bois Marie, 1962 , 2005 .
[33] J. Jouanolou. Cohomologie de quelques schemas classiques et theorie cohomologique des classes de Chern , 1977 .
[34] Alexander Grothendieck,et al. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2) , 1962 .
[35] S. Abhyankar. Resolution Of Singularities Of Embedded Algebraic Surfaces , 1966 .
[36] Serge Lang,et al. Abelian varieties , 1983 .
[37] A. Skorobogatov. Exponential sums, the geometry of hyperplane sections, and some diophantine problems , 1992 .
[38] Yves Aubry,et al. A Weil theorem for singular curves , 1996 .
[39] P. Deligne. Résumé des premiers exposés de A. Grothendieck , 1972 .
[40] T. Willmore. Algebraic Geometry , 1973, Nature.