Cognitive influences on fixational eye movements

[1]  M. Rucci,et al.  High-resolution eye-tracking via digital imaging of Purkinje reflections , 2022, bioRxiv.

[2]  M. Rucci,et al.  Fast and nonuniform dynamics of perisaccadic vision in the central fovea , 2021, Proceedings of the National Academy of Sciences.

[3]  Ziad M. Hafed,et al.  Dissociable Cortical and Subcortical Mechanisms for Mediating the Influences of Visual Cues on Microsaccadic Eye Movements , 2021, Frontiers in Neural Circuits.

[4]  Martina Poletti,et al.  Modulations of foveal vision associated with microsaccade preparation , 2020, Proceedings of the National Academy of Sciences.

[5]  M. Rucci,et al.  Finely tuned eye movements enhance visual acuity , 2020, Nature Communications.

[6]  Ehud Ahissar,et al.  Closed loop motor-sensory dynamics in human vision , 2019, PloS one.

[7]  Rodolphe Sepulchre,et al.  Geometric Distance Between Positive Definite Matrices of Different Dimensions , 2018, IEEE Transactions on Information Theory.

[8]  Ziad M Hafed,et al.  Neuronal control of fixation and fixational eye movements , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  J. Henderson Gaze Control as Prediction , 2017, Trends in Cognitive Sciences.

[10]  Martina Poletti,et al.  Head-Eye Coordination at a Microscopic Scale , 2015, Current Biology.

[11]  Martina Poletti,et al.  Control and Functions of Fixational Eye Movements. , 2015, Annual review of vision science.

[12]  J. Victor,et al.  The unsteady eye: an information-processing stage, not a bug , 2015, Trends in Neurosciences.

[13]  Michele Rucci,et al.  The Visual Input to the Retina during Natural Head-Free Fixation , 2014, The Journal of Neuroscience.

[14]  Girish Kumar,et al.  Characteristics of fixational eye movements in people with macular disease. , 2014, Investigative ophthalmology & visual science.

[15]  S. Martinez-Conde,et al.  Distinctive features of microsaccades in Alzheimer’s disease and in mild cognitive impairment , 2013, AGE.

[16]  S. Martinez-Conde,et al.  The impact of microsaccades on vision: towards a unified theory of saccadic function , 2013, Nature Reviews Neuroscience.

[17]  M. Rucci,et al.  Precision of sustained fixation in trained and untrained observers. , 2012, Journal of vision.

[18]  David S. Zee,et al.  Cerebellum and Ocular Motor Control , 2011, Front. Neur..

[19]  M. Rucci,et al.  Microsaccades Precisely Relocate Gaze in a High Visual Acuity Task , 2010, Nature Neuroscience.

[20]  R. Forbes,et al.  An exploration of ocular fixation in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy , 2010, Journal of Neurology.

[21]  Ziad M. Hafed,et al.  A Neural Mechanism for Microsaccade Generation in the Primate Superior Colliculus , 2009, Science.

[22]  M. Hubert,et al.  High-Breakdown Robust Multivariate Methods , 2008, 0808.0657.

[23]  David Williams,et al.  The locus of fixation and the foveal cone mosaic. , 2005, Journal of vision.

[24]  M E Goldberg,et al.  Dependence of saccade-related activity in the primate superior colliculus on visual target presence. , 2001, Journal of neurophysiology.

[25]  G. Edelman,et al.  Modeling LGN Responses during Free-Viewing: A Possible Role of Microscopic Eye Movements in the Refinement of Cortical Orientation Selectivity , 2000, The Journal of Neuroscience.

[26]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[27]  Robert M. McPeek,et al.  Saccades require focal attention and are facilitated by a short-term memory system , 1999, Vision Research.

[28]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[29]  E. Kaplan,et al.  The receptive field of the primate P retinal ganglion cell, I: Linear dynamics , 1997, Visual Neuroscience.

[30]  B. Dosher,et al.  The role of attention in the programming of saccades , 1995, Vision Research.

[31]  M. Segraves Activity of monkey frontal eye field neurons projecting to oculomotor regions of the pons. , 1992, Journal of neurophysiology.

[32]  C. Bruce,et al.  Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons , 1988, The Journal of comparative neurology.

[33]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[34]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.