Space–time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle

AbstractMany of the computational challenges encountered in turbocharger-turbine flow analysis have been addressed by an integrated set of space–time (ST) computational methods. The core computational method is the ST variational multiscale (ST-VMS) method. The ST framework provides higher-order accuracy in general, and the VMS feature of the ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flow. The moving-mesh feature of the ST framework enables high-resolution computation near the rotor surface. The ST slip interface (ST-SI) method enables moving-mesh computation of the spinning rotor. The mesh covering the rotor spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST Isogeometric Analysis enables more accurate representation of the turbine geometry and increased accuracy in the flow solution. The ST/NURBS Mesh Update Method enables exact representation of the mesh rotation. A general-purpose NURBS mesh generation method makes it easier to deal with the complex geometries involved. An SI also provides mesh generation flexibility in a general context by accurately connecting the two sides of the solution computed over nonmatching meshes, and that is enabling the use of nonmatching NURBS meshes in the computations. The computational analysis needs to cover a full intake/exhaust cycle, which is much longer than the turbine rotation cycle because of high rotation speeds, and the long duration required is an additional computational challenge. As one way of addressing that challenge, we propose here to calculate the turbine efficiency for the intake/exhaust cycle by interpolation from the efficiencies associated with a set of steady-inflow computations at different flow rates. The efficiencies obtained from the computations with time-dependent and steady-inflow representations of the intake/exhaust cycle compare well. This demonstrates that predicting the turbine performance from a set of steady-inflow computations is a good way of addressing the challenge associated with the multiple time scales.

[1]  Alessandro Corsini,et al.  Computational analysis of wind-turbine blade rain erosion , 2016 .

[2]  T. Tezduyar,et al.  Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and $$YZ\beta $$YZβ shock-capturing , 2015 .

[3]  Yuri Bazilevs,et al.  Fluid–structure interaction simulation of pulsatile ventricular assist devices , 2013, Computational Mechanics.

[4]  Tayfun E. Tezduyar,et al.  Turbocharger turbine and exhaust manifold flow computation with the Space–Time Variational Multiscale Method and Isogeometric Analysis , 2019, Computers & Fluids.

[5]  Yuri Bazilevs,et al.  Using ALE-VMS to compute aerodynamic derivatives of bridge sections , 2019, Computers & Fluids.

[6]  Tayfun E. Tezduyar,et al.  Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods , 2017 .

[7]  Yuri Bazilevs,et al.  Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk , 2014 .

[8]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[9]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[10]  Tayfun E. Tezduyar,et al.  Multiscale space-time methods for thermo-fluid analysis of a ground vehicle and its tires , 2015 .

[11]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[12]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[13]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[14]  Yuri Bazilevs,et al.  Computational and experimental investigation of free vibration and flutter of bridge decks , 2018, Computational Mechanics.

[15]  Tayfun E. Tezduyar,et al.  Space–time Isogeometric flow analysis with built-in Reynolds-equation limit , 2019, Mathematical Models and Methods in Applied Sciences.

[16]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[17]  Yuri Bazilevs,et al.  Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[18]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[19]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[20]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[21]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[22]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[23]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of inviscid supersonic flows with YZβ shock-Capturing , 2007 .

[24]  Xiaowei Deng,et al.  Fluid–Structure Interaction Modeling of Vertical-Axis Wind Turbines , 2014 .

[25]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[26]  Xiao Yun Xu,et al.  Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates , 2014 .

[27]  Yuri Bazilevs,et al.  New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods , 2015 .

[28]  Tayfun E. Tezduyar,et al.  Space–Time method for flow computations with slip interfaces and topology changes (ST-SI-TC) , 2016 .

[29]  Xiaowei Deng,et al.  Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines , 2017 .

[30]  Kenji Takizawa,et al.  Patient‐specific arterial fluid–structure interaction modeling of cerebral aneurysms , 2011 .

[31]  Alessandro Corsini,et al.  A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors , 2010 .

[32]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .

[33]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[34]  T. Tezduyar,et al.  SUPG/PSPG Computational Analysis of Rain Erosion in Wind-Turbine Blades , 2016 .

[35]  Tayfun E. Tezduyar,et al.  Heart Valve Flow Computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) Method and Isogeometric Analysis (IGA) , 2018 .

[36]  Tayfun E. Tezduyar,et al.  Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization , 2019, Computers & Fluids.

[37]  Yuri Bazilevs,et al.  Experimental and numerical FSI study of compliant hydrofoils , 2015 .

[38]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres with the SUPG Formulation and YZβ Shock-Capturing , 2006 .

[39]  Hitoshi Hattori,et al.  Computational analysis of flow-driven string dynamics in turbomachinery , 2017 .

[40]  Tayfun E. Tezduyar,et al.  Computational analysis of flow-driven string dynamics in a pump and residence time calculation , 2019 .

[41]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[42]  Tayfun E. Tezduyar,et al.  Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method , 2017 .

[43]  Tayfun E. Tezduyar,et al.  A General-Purpose NURBS Mesh Generation Method for Complex Geometries , 2018 .

[44]  Yuri Bazilevs,et al.  Computational analysis methods for complex unsteady flow problems , 2019, Mathematical Models and Methods in Applied Sciences.

[45]  Yuri Bazilevs,et al.  Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .

[46]  Yuri Bazilevs,et al.  Isogeometric Modeling and Experimental Investigation of Moving-Domain Bridge Aerodynamics , 2019, Journal of Engineering Mechanics.

[47]  Tayfun E. Tezduyar,et al.  Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization , 2018, Computational Mechanics.

[48]  Alessandro Corsini,et al.  Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations , 2012 .

[49]  Victor M. Calo,et al.  YZβ discontinuity capturing for advection‐dominated processes with application to arterial drug delivery , 2007 .

[50]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[51]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[52]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[53]  Tayfun E. Tezduyar,et al.  Space–time computations in practical engineering applications: a summary of the 25-year history , 2018, Computational Mechanics.

[54]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[55]  Tayfun E. Tezduyar,et al.  Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping , 2018, Computational Mechanics.

[56]  Tayfun E. Tezduyar,et al.  Tire aerodynamics with actual tire geometry, road contact and tire deformation , 2018, Computational Mechanics.

[57]  Alessandro Corsini,et al.  A variational multiscale method for particle-cloud tracking in turbomachinery flows , 2014 .

[58]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[59]  Tayfun E. Tezduyar,et al.  Medical-image-based aorta modeling with zero-stress-state estimation , 2019, Computational Mechanics.

[60]  Tayfun E. Tezduyar,et al.  New Directions in Space–Time Computational Methods , 2016 .

[61]  A. Korobenko,et al.  Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis , 2018, Archives of Computational Methods in Engineering.

[62]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[63]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity , 2012 .

[64]  Hitoshi Hattori,et al.  Space–time VMS method for flow computations with slip interfaces (ST-SI) , 2015 .

[65]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[66]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[67]  A. Korobenko,et al.  FSI Simulation of two back-to-back wind turbines in atmospheric boundary layer flow , 2017 .

[68]  Alessandro Corsini,et al.  A Multiscale Finite Element Formulation With Discontinuity Capturing for Turbulence Models With Dominant Reactionlike Terms , 2009 .

[69]  Kenji Takizawa,et al.  Computational thermo-fluid analysis of a disk brake , 2016 .

[70]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[71]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[72]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[73]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[74]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[75]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[76]  Tayfun E. Tezduyar,et al.  A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery , 2019 .

[77]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[78]  Tayfun E. Tezduyar,et al.  Methods for computation of flow-driven string dynamics in a pump and residence time , 2019, Mathematical Models and Methods in Applied Sciences.

[79]  A. Korobenko,et al.  Recent Advances in ALE-VMS and ST-VMS Computational Aerodynamic and FSI Analysis of Wind Turbines , 2018 .

[80]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[81]  A. Korobenko,et al.  Fluid–Structure Interaction Modeling for Fatigue-Damage Prediction in Full-Scale Wind-Turbine Blades , 2016 .

[82]  Tayfun E. Tezduyar,et al.  Stabilization and shock-capturing parameters in SUPG formulation of compressible flows , 2004 .

[83]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[84]  A. L. Marsden,et al.  Computation of residence time in the simulation of pulsatile ventricular assist devices , 2014 .

[85]  Tayfun E. Tezduyar,et al.  A Geometrical-Characteristics Study in Patient-Specific FSI Analysis of Blood Flow in the Thoracic Aorta , 2016 .

[86]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[87]  Tayfun E. Tezduyar,et al.  Aorta flow analysis and heart valve flow and structure analysis , 2018 .

[88]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[89]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[90]  Kenji Takizawa,et al.  Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent , 2012, Computational Mechanics.

[91]  Tayfun E. Tezduyar,et al.  Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations , 2018 .

[92]  Tayfun E. Tezduyar,et al.  Estimation of element-based zero-stress state for arterial FSI computations , 2014 .

[93]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[94]  T. Tezduyar,et al.  Flow Analysis of a Wave-Energy Air Turbine with the SUPG/PSPG Method and DCDD , 2016 .

[95]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[96]  Tayfun E. Tezduyar,et al.  SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS , 2013 .

[97]  A. Korobenko,et al.  Aerodynamic Simulation of Vertical-Axis Wind Turbines , 2014 .

[98]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[99]  Kenji Takizawa,et al.  FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta , 2014 .

[100]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[101]  Anindya Ghoshal,et al.  Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling , 2017 .

[102]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[103]  Tayfun E. Tezduyar,et al.  FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes , 2014 .

[104]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[105]  Tayfun E. Tezduyar,et al.  Special methods for aerodynamic-moment calculations from parachute FSI modeling , 2015 .

[106]  Tayfun E. Tezduyar,et al.  Aorta zero-stress state modeling with T-spline discretization , 2018, Computational Mechanics.

[107]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[108]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[109]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[110]  A. Korobenko,et al.  Computational free-surface fluid–structure interaction with application to floating offshore wind turbines , 2016 .

[111]  Kenji Takizawa,et al.  Space–time fluid–structure interaction modeling of patient‐specific cerebral aneurysms , 2011 .

[112]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[113]  Tayfun E. Tezduyar,et al.  SUPG finite element computation of compressible flows with the entropy and conservation variables formulations , 1993 .

[114]  T. Tezduyar,et al.  Flow analysis of a wave-energy air turbine with the SUPG/PSPG stabilization and Discontinuity-Capturing Directional Dissipation , 2016 .

[115]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[116]  Yuri Bazilevs,et al.  Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis , 2017 .

[117]  Alessandro Corsini,et al.  Computer Modeling of Wave-Energy Air Turbines With the SUPG/PSPG Formulation and Discontinuity-Capturing Technique , 2012 .

[118]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[119]  Kenji Takizawa,et al.  Computer modeling techniques for flapping-wing aerodynamics of a locust , 2013 .

[120]  Tayfun E. Tezduyar,et al.  Estimation of Element-Based Zero-Stress State in Arterial FSI Computations with Isogeometric Wall Discretization , 2018 .

[121]  T. Tezduyar,et al.  Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion , 2019, Computational Mechanics.

[122]  A. Korobenko,et al.  Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines , 2015 .

[123]  Tayfun E. Tezduyar,et al.  Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity , 2017 .

[124]  Yuri Bazilevs,et al.  Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics , 2012 .

[125]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .

[126]  T. Hughes,et al.  Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid–structure interaction , 2018, Mathematical Models and Methods in Applied Sciences.

[127]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[128]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[129]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[130]  Ming-Chen Hsu,et al.  Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms , 2010, Biomechanics and modeling in mechanobiology.

[131]  Tayfun E. Tezduyar,et al.  Enhanced-discretization Selective Stabilization Procedure (EDSSP) , 2006 .

[132]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[133]  Tayfun E. Tezduyar,et al.  Aorta modeling with the element-based zero-stress state and isogeometric discretization , 2017 .

[134]  A. Korobenko,et al.  FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration , 2016 .

[135]  Marco S. Pigazzini,et al.  Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear , 2017 .

[136]  Tayfun E. Tezduyar,et al.  Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems , 1986 .

[137]  A. Korobenko,et al.  ALE–VMS formulation for stratified turbulent incompressible flows with applications , 2015 .

[138]  Alessandro Corsini,et al.  Stabilized finite element computation of NOx emission in aero‐engine combustors , 2011 .

[139]  T. Tezduyar,et al.  Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation , 2006 .

[140]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[141]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[142]  Tayfun E. Tezduyar,et al.  FSI modeling of the Orion spacecraft drogue parachutes , 2015 .

[143]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[144]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[145]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[146]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[147]  Pablo A. Kler,et al.  SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems , 2013 .

[148]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[149]  T. Tezduyar,et al.  Computation of inviscid compressible flows with the V‐SGS stabilization and YZβ shock‐capturing , 2007 .

[150]  Alessandro Corsini,et al.  Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD) , 2007 .

[151]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[152]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[153]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[154]  Tayfun E. Tezduyar,et al.  Space–Time Computational Analysis of Tire Aerodynamics with Actual Geometry, Road Contact, and Tire Deformation , 2018 .

[155]  Yuri Bazilevs,et al.  Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling , 2017, Comput. Math. Appl..

[156]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[157]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014 .

[158]  Tayfun E. Tezduyar,et al.  Stabilized formulations for incompressible flows with thermal coupling , 2008 .

[159]  Tayfun E. Tezduyar,et al.  Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes , 2014 .

[160]  A. Korobenko,et al.  A new variational multiscale formulation for stratified incompressible turbulent flows , 2017 .